La série thêta
The theta series
Keywords: Spectral theta series, Zoll manifolds, periodic geodesic flow, Shale-Weil representation, horocycle flow, logarithm laws
Mot clés : série théta spectrale, variété de Zoll, flot géodésique périodique, représentation de Shale-Weil, flot horocyclique, lois du logarithme
@article{AIF_2007__57_7_2401_0, author = {Marklof, Jens}, title = {Spectral theta series of operators with periodic bicharacteristic flow}, journal = {Annales de l'Institut Fourier}, pages = {2401--2427}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {7}, year = {2007}, doi = {10.5802/aif.2338}, zbl = {1133.35075}, mrnumber = {2394547}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2338/} }
TY - JOUR AU - Marklof, Jens TI - Spectral theta series of operators with periodic bicharacteristic flow JO - Annales de l'Institut Fourier PY - 2007 SP - 2401 EP - 2427 VL - 57 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2338/ DO - 10.5802/aif.2338 LA - en ID - AIF_2007__57_7_2401_0 ER -
%0 Journal Article %A Marklof, Jens %T Spectral theta series of operators with periodic bicharacteristic flow %J Annales de l'Institut Fourier %D 2007 %P 2401-2427 %V 57 %N 7 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2338/ %R 10.5802/aif.2338 %G en %F AIF_2007__57_7_2401_0
Marklof, Jens. Spectral theta series of operators with periodic bicharacteristic flow. Annales de l'Institut Fourier, Tome 57 (2007) no. 7, pp. 2401-2427. doi : 10.5802/aif.2338. https://www.numdam.org/articles/10.5802/aif.2338/
[1] Manifolds all of whose geodesics are closed, Springer-Verlag, Berlin-New York, 1978 | MR | Zbl
[2] Formule de Poisson pour les variétés riemanniennes, Invent. Math., Volume 24 (1974), pp. 65-82 | DOI | MR | Zbl
[3] Spectre du laplacien et longueurs des géodésiques périodiques. I., Compositio Math., Volume 27 (1973), pp. 83-106 | Numdam | MR | Zbl
[4] Spectre du laplacien et longueurs des géodésiques périodiques. II., Compositio Math., Volume 27 (1973), pp. 159-184 | Numdam | MR | Zbl
[5] Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques, Comment. Math. Helv., Volume 54 (1979) no. 3, pp. 508-522 | DOI | MR | Zbl
[6] The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., Volume 29 (1975) no. 1, pp. 39-79 | DOI | MR | Zbl
[7] Mixing, counting, and equidistribution in Lie groups, Duke Math. J., Volume 71 (1993) no. 1, pp. 181-209 | DOI | MR | Zbl
[8] Asymptotic expansions of finite theta series, Acta Arithm., Volume 32 (1977), pp. 129-146 | MR | Zbl
[9] Table of integrals, series, and products, Academic Press, New York-London, 1965 | Zbl
[10] Some spectral results for the Laplace operator with potential on the
[11] Some spectral results on rank one symmetric spaces, Advances in Math., Volume 28 (1978) no. 2, pp. 129-137 | DOI | MR | Zbl
[12] Chaos in classical and quantum mechanics. Interdisciplinary Applied Mathematics, 1., Springer-Verlag, New York, 1990 | MR | Zbl
[13] The proof of the central limit theorem for theta sums, Duke Math. J. (1981), pp. 873-885 | DOI | MR | Zbl
[14] On the central limit theorem for theta series, Michigan Math. J., Volume 29 (1982), pp. 65-77 | DOI | MR | Zbl
[15] The uniform central limit theorem for theta sums, Duke Math. J., Volume 50 (1983), pp. 649-666 | DOI | MR | Zbl
[16] Logarithm laws for flows on homogeneous spaces, Invent. Math., Volume 138 (1999) no. 3, pp. 451-494 | DOI | MR | Zbl
[17] The Weil representation, Maslov index and theta series, Progress in Mathematics, 6. Birkhäuser, Boston, Mass., 1980 | MR | Zbl
[18] Spectral form factors of rectangle billiards, Comm. Math. Phys., Volume 199 (1998) no. 1, pp. 169-202 | DOI | MR | Zbl
[19] Limit theorems for theta sums, Duke Math. J., Volume 97 (1999) no. 1, pp. 127-153 | DOI | MR | Zbl
[20] Theta sums, Eisenstein series, and the semiclassical dynamics of a precessing spin, Emerging applications of number theory (Minneapolis, MN, 1996), IMA Vol. Math. Appl., Springer, New York, Volume 109 (1999), pp. 405-450 | MR | Zbl
[21] Pair correlation densities of inhomogeneous quadratic forms, Ann. of Math., Volume 158 (2003) no. 2, pp. 419-471 | DOI | MR | Zbl
[22] Ratner’s theorems on unipotent flows, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2005 | Zbl
[23] Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series, Comm. Pure Appl. Math., Volume 34 (1981) no. 6, pp. 719-739 | DOI | MR | Zbl
[24] Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.), Volume 20 (1956), pp. 47-87 | MR | Zbl
[25] Limit distributions of expanding translates of certain orbits on homogeneous spaces, Proc. Indian Acad. Sci. Math. Sci., Volume 106 (1996) no. 2, pp. 105-125 | DOI | MR | Zbl
[26] On the uniform equidistribution of long closed horocycles, Duke Math. J., Volume 123 (2004) no. 3, pp. 507-547 | DOI | MR | Zbl
[27] Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics, Acta Math., Volume 149 (1982) no. 1, pp. 215-237 | DOI | MR | Zbl
[28] Spectral statistics on Zoll surfaces, Comm. Math. Phys., Volume 154 (1993) no. 2, pp. 313-346 | DOI | MR | Zbl
[29] Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J., Volume 44 (1977) no. 4, pp. 883-892 | DOI | MR | Zbl
[30] Fine structure of Zoll spectra, J. Funct. Anal., Volume 143 (1997) no. 2, pp. 415-460 | DOI | MR | Zbl
Cité par Sources :