Holonomie sans structure de Frobenius et critères d’holonomie
[Holonomicity without Frobenius structure]
Annales de l'Institut Fourier, Volume 61 (2011) no. 4, pp. 1437-1454.

This work fits into Berthelot’s theory of arithmetic 𝒟-modules. We define the notion of holonomic arithmetic 𝒟-modules. When the modules are endowed with a Frobenius structure we recover Berthelot’s definition of holonomicity. We show that Bernstein’s inequality and Virrion’s criterion hold without the hypothesis of a Frobenius structure. We prove that an overcoherent 𝒟-module (without Frobenius structure) is 𝒪-coherent over a dense open set of its support. This implies that a coherent 𝒟-module whose dual is an overcoherent complex is holonomic. In particular, an overholonomic 𝒟-module is holonomic.

Ce travail s’inscrit dans le cadre de la théorie des 𝒟-modules arithmétiques de Berthelot. Nous définissons la notion de 𝒟-modules arithmétiques holonomes. Lorsque les modules sont munis d’une structure de Frobenius, nous retrouvons la définition d’holonomie de Berthelot. Nous vérifions que l’inégalité de Bernstein et le critère homologique d’holonomie de Virrion restent valables sans l’hypothèse d’une structure de Frobenius. Nous établissons qu’un 𝒟-module surcohérent (sans structure de Frobenius) devient 𝒪-cohérent sur un ouvert dense de son support. Il en résulte qu’un 𝒟-module cohérent est holonome si son dual est un complexe surcohérent. En particulier un 𝒟-module surholonome est holonome.

DOI: 10.5802/aif.2645
Classification: 14F10,  14F30
Keywords: Holonomicity, arithmetic 𝒟-modules
Caro, Daniel 1

1 Université de Caen Laboratoire de Mathématiques Nicolas Oresme Campus 2 14032 Caen Cedex (France)
@article{AIF_2011__61_4_1437_0,
     author = {Caro, Daniel},
     title = {Holonomie sans structure de {Frobenius} et crit\`eres d{\textquoteright}holonomie},
     journal = {Annales de l'Institut Fourier},
     pages = {1437--1454},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {61},
     number = {4},
     year = {2011},
     doi = {10.5802/aif.2645},
     mrnumber = {2951498},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.5802/aif.2645/}
}
TY  - JOUR
AU  - Caro, Daniel
TI  - Holonomie sans structure de Frobenius et critères d’holonomie
JO  - Annales de l'Institut Fourier
PY  - 2011
DA  - 2011///
SP  - 1437
EP  - 1454
VL  - 61
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2645/
UR  - https://www.ams.org/mathscinet-getitem?mr=2951498
UR  - https://doi.org/10.5802/aif.2645
DO  - 10.5802/aif.2645
LA  - fr
ID  - AIF_2011__61_4_1437_0
ER  - 
%0 Journal Article
%A Caro, Daniel
%T Holonomie sans structure de Frobenius et critères d’holonomie
%J Annales de l'Institut Fourier
%D 2011
%P 1437-1454
%V 61
%N 4
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2645
%R 10.5802/aif.2645
%G fr
%F AIF_2011__61_4_1437_0
Caro, Daniel. Holonomie sans structure de Frobenius et critères d’holonomie. Annales de l'Institut Fourier, Volume 61 (2011) no. 4, pp. 1437-1454. doi : 10.5802/aif.2645. http://archive.numdam.org/articles/10.5802/aif.2645/

[1] Berthelot, Pierre Cohomologie rigide et théorie des 𝒟-modules, p -adic analysis (Trento, 1989) (Lecture Notes in Math.), Volume 1454, Springer, Berlin, 1990, pp. 80-124 | MR | Zbl

[2] Berthelot, Pierre 𝒟-modules arithmétiques. I. Opérateurs différentiels de niveau fini, Ann. Sci. École Norm. Sup. (4), Volume 29 (1996) no. 2, pp. 185-272 | EuDML | Numdam | MR | Zbl

[3] Berthelot, Pierre 𝒟-modules arithmétiques. II. Descente par Frobenius, Mém. Soc. Math. Fr. (N.S.) (2000) no. 81, pp. vi+136 | EuDML | Numdam | MR | Zbl

[4] Berthelot, Pierre Introduction à la théorie arithmétique des 𝒟-modules, Astérisque (2002) no. 279, pp. 1-80 (Cohomologies p-adiques et applications arithmétiques, II) | MR | Zbl

[5] Borel, A.; Grivel, P.-P.; Kaup, B.; Haefliger, A.; Malgrange, B.; Ehlers, F. Algebraic D -modules, Perspectives in Mathematics, 2, Academic Press Inc., Boston, MA, 1987 | MR | Zbl

[6] Bosch, S.; Güntzer, U.; Remmert, R. Non-Archimedean analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 261, Springer-Verlag, Berlin, 1984 (A systematic approach to rigid analytic geometry) | MR | Zbl

[7] Caro, Daniel 𝒟-modules arithmétiques surcohérents. Application aux fonctions L, Ann. Inst. Fourier (Grenoble), Volume 54 (2004) no. 6, pp. 1943-1996 | DOI | EuDML | Numdam | MR | Zbl

[8] Caro, Daniel Comparaison des foncteurs duaux des isocristaux surconvergents, Rend. Sem. Mat. Univ. Padova, Volume 114 (2005), pp. 131-211 | EuDML | Numdam | MR | Zbl

[9] Caro, Daniel Dévissages des F-complexes de 𝒟-modules arithmétiques en F-isocristaux surconvergents, Invent. Math., Volume 166 (2006) no. 2, pp. 397-456 | DOI | MR | Zbl

[10] Caro, Daniel Fonctions L associées aux 𝒟-modules arithmétiques. Cas des courbes, Compos. Math., Volume 142 (2006) no. 1, pp. 169-206 | DOI | MR | Zbl

[11] Caro, Daniel F-isocristaux surconvergents et surcohérence différentielle, Invent. Math., Volume 170 (2007) no. 3, pp. 507-539 | DOI | MR | Zbl

[12] Caro, Daniel 𝒟-modules arithmétiques surholonomes, Ann. Sci. Éc. Norm. Supér. (4), Volume 42 (2009) no. 1, pp. 141-192 | Numdam | MR | Zbl

[13] Caro, Daniel Une caractérisation de la surcohérence, J. Math. Sci. Univ. Tokyo, Volume 16 (2009) no. 1, pp. 1-21 | MR | Zbl

[14] Noot-Huyghe, C. Finitude de la dimension homologique d’algèbres d’opérateurs différentiels faiblement complètes et à coefficients surconvergents, J. Algebra, Volume 307 (2007) no. 2, pp. 499-540 | DOI | MR | Zbl

[15] Virrion, Anne Dualité locale et holonomie pour les 𝒟-modules arithmétiques, Bull. Soc. Math. France, Volume 128 (2000) no. 1, pp. 1-68 | Numdam | MR | Zbl

Cited by Sources: