By using the method of Arakelov geometry in the function field setting, we associate, to each graded linear series which is birational and of sub-finite type, a convex body whose Lebesgue measure identifies with the volume of the graded linear series. Compared to other constructions in the literature, less non-intrinsic parameters of the projective variety are involved in this new approach. Moreover, this method does not require the existence of a regular rational point in the projective variety, which was assumed for example in the construction of Lazarsfeld and Mustaţǎ.
En utilisant les méthodes de la géométrie d’Arakelov dans le cadre de corps de fonctions, on associe, à chaque système linéaire gradué birationnel et de type sous-fini, un corps convexe dont la mesure de Lebesgue s’identifie au volume du système linéaire gradué. Comparé à d’autres approches dans la littérature, cette nouvelle approche demande moins de paramètres non intrinsèques de la variété projective. En outre, cette méthode n’exige pas l’existence d’un point rationnel régulier sur la variété projective, ce qui est supposé, par exemple, dans la construction de Lazarsfeld et Mustaţǎ.
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1051
Keywords: Okounkov bodies, function field arithmetic
@article{JTNB_2018__30_3_829_0, author = {Chen, Huayi}, title = {Newton{\textendash}Okounkov bodies: an approach of function field arithmetic}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {829--845}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {3}, year = {2018}, doi = {10.5802/jtnb.1051}, mrnumber = {3938628}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1051/} }
TY - JOUR AU - Chen, Huayi TI - Newton–Okounkov bodies: an approach of function field arithmetic JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 829 EP - 845 VL - 30 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1051/ DO - 10.5802/jtnb.1051 LA - en ID - JTNB_2018__30_3_829_0 ER -
%0 Journal Article %A Chen, Huayi %T Newton–Okounkov bodies: an approach of function field arithmetic %J Journal de théorie des nombres de Bordeaux %D 2018 %P 829-845 %V 30 %N 3 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.1051/ %R 10.5802/jtnb.1051 %G en %F JTNB_2018__30_3_829_0
Chen, Huayi. Newton–Okounkov bodies: an approach of function field arithmetic. Journal de théorie des nombres de Bordeaux, Volume 30 (2018) no. 3, pp. 829-845. doi : 10.5802/jtnb.1051. http://archive.numdam.org/articles/10.5802/jtnb.1051/
[1] Okounkov bodies of filtered linear series, Compos. Math., Volume 147 (2011) no. 4, pp. 1205-1229 | DOI | MR | Zbl
[2] Éléments de mathématique. Algèbre commutative. Chapitre 3: Graduations, filtra- tions et topologies. Chapitre 4: Idéaux premiers associés et décomposition primaire., Actualités Scientifiques et Industrielles, 1293, Hermann, 1961 | Zbl
[3] Éléments de mathématique. Algèbre. Chapitres 4 à 7, Masson, 1981 | Zbl
[4] Éléments de mathématique. Algèbre commutative. Chapitre 8. Dimension. Chapitre 9. Anneaux locaux noethériens complets, Masson, 1983 | Zbl
[5] Arithmetic Fujita approximation, Ann. Sci. Éc. Norm. Supér., Volume 43 (2010) no. 4, pp. 555-578 | DOI | Numdam | MR | Zbl
[6] Convergence des polygones de Harder-Narasimhan, Mém. Soc. Math. Fr., Nouv. Sér., Volume 120 (2010), pp. 1-120 | Numdam | Zbl
[7] Majorations explicites des fonctions de Hilbert-Samuel géométrique et arithmétique, Math. Z., Volume 279 (2015) no. 1, pp. 99-137 | DOI | MR | Zbl
[8] Newton–Okounkov bodies sprouting on the valuative tree, Rend. Circ. Mat. Palermo, Volume 66 (2017) no. 2, pp. 161-194 | DOI | MR | Zbl
[9] Asymptotic multiplicities of graded families of ideals and linear series, Adv. Math., Volume 264 (2014), pp. 55-113 | DOI | MR | Zbl
[10] Newton–Okounkov bodies over discrete valuation rings and linear systems on graphs (2016) (preprint)
[11] Algebraic equations and convex bodies, Perspectives in analysis, geometry, and topology (Progress in Mathematics), Volume 296, Birkhäuser, 2012, pp. 263-282 | DOI | MR | Zbl
[12] Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory, Ann. Math., Volume 176 (2012) no. 2, pp. 925-978 | DOI | MR | Zbl
[13] An introduction to the theory of functional equations and inequalities, Birkhäuser, 2009, xiv+595 pages | Zbl
[14] Convex bodies appearing as Okounkov bodies of divisors, Adv. Math., Volume 229 (2012) no. 5, pp. 2622-2639 | DOI | MR | Zbl
[15] Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 48, Springer, 2004, xviii+387 pages | Zbl
[16] Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér., Volume 42 (2009) no. 5, pp. 783-835 | DOI | Numdam | MR | Zbl
[17] Approximable algebras and a question of Chen (2017) (https://arxiv.org/abs/1703.01801)
[18] Characterising approximable algebras (2017) (preprint)
[19] Brunn–Minkowski inequality for multiplicities, Invent. Math., Volume 125 (1996) no. 3, pp. 405-411 | DOI | MR | Zbl
[20] Why would multiplicities be log-concave?, The orbit method in geometry and physics (Marseille, 2000) (Progress in Mathematics), Volume 213, Birkhäuser, 2000, pp. 329-347 | Zbl
[21] An absolute Siegel’s lemma, J. Reine Angew. Math., Volume 476 (1996), pp. 1-26 | MR | Zbl
[22] On volumes of arithmetic line bundles, Compos. Math., Volume 145 (2009) no. 6, pp. 1447-1464 | DOI | MR | Zbl
Cited by Sources: