Merel’s result on the strong uniform boundedness conjecture made it meaningful to classify the torsion part of the Mordell–Weil groups of all elliptic curves defined over number fields of fixed degree . In this paper, we discuss the cyclic torsion subgroup of elliptic curves over cubic number fields. For or , we show that is not a subgroup of for any elliptic curve over a cubic number field .
Le résultat de Merel sur la forme forte de la conjecture de borne uniforme a mis en valeur la classification des parties de torsion des groupes de Mordell–Weil des courbes elliptiques définies sur les corps de nombres de degré fixé . Dans cet article, nous étudions les sous-groupes de torsion cycliques des courbes elliptiques sur les corps de nombres cubiques. Pour ou , nous montrons que n’est pas un sous-groupe de pour toute courbe elliptique sur un corps de nombres cubique .
Revised:
Accepted:
Published online:
Keywords: torsion subgroup, elliptic curves, modular curves
@article{JTNB_2019__31_3_663_0, author = {Wang, Jian}, title = {On the cyclic torsion of elliptic curves over cubic number fields {(II)}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {663--670}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {3}, year = {2019}, doi = {10.5802/jtnb.1100}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1100/} }
TY - JOUR AU - Wang, Jian TI - On the cyclic torsion of elliptic curves over cubic number fields (II) JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 663 EP - 670 VL - 31 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1100/ DO - 10.5802/jtnb.1100 LA - en ID - JTNB_2019__31_3_663_0 ER -
%0 Journal Article %A Wang, Jian %T On the cyclic torsion of elliptic curves over cubic number fields (II) %J Journal de théorie des nombres de Bordeaux %D 2019 %P 663-670 %V 31 %N 3 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.1100/ %R 10.5802/jtnb.1100 %G en %F JTNB_2019__31_3_663_0
Wang, Jian. On the cyclic torsion of elliptic curves over cubic number fields (II). Journal de théorie des nombres de Bordeaux, Volume 31 (2019) no. 3, pp. 663-670. doi : 10.5802/jtnb.1100. http://archive.numdam.org/articles/10.5802/jtnb.1100/
[1] Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 21, Springer, 1990 | Zbl
[2] A first course in modular forms, Graduate Texts in Mathematics, 228, Springer, 2005 | MR | Zbl
[3] Two theorems on modular curves, Funkts. Anal. Prilozh., Volume 7 (1973) no. 2, pp. 83-84 | MR | Zbl
[4] Sporadic torsion, 2016 (http://www.mathcs.emory.edu/~dzb/slides/DZB-SERMON-cubic-torsion.pdf)
[5] Curves with infinitely many points of fixed degree, Isr. J. Math., Volume 85 (1994) no. 1, pp. 1-3 | MR | Zbl
[6] Kroneckerian model of fields of elliptic modular functions, Am. J. Math., Volume 81 (1959), pp. 561-577 | DOI | MR | Zbl
[7] Hyperelliptic modular curves, Tsukuba J. Math., Volume 15 (1991) no. 2, pp. 413-423 | DOI | MR | Zbl
[8] On the torsion of elliptic curves over cubic number fields, Acta Arith., Volume 113 (2004) no. 3, pp. 291-301 | DOI | MR | Zbl
[9] Torsion points on elliptic curves and q-coefficients of modular forms, Invent. Math., Volume 109 (1992) no. 2, pp. 221-229 | DOI | MR | Zbl
[10] -adic Hodge theory and values of zeta functions of modular forms, Cohomologies p-adiques et applications arithmétiques (Astérisque), Volume 295, Société Mathématique de France, 2004, pp. 117-290 | Numdam | Zbl
[11] Galois properties of torsion points on abelian varieties, Invent. Math., Volume 62 (1981) no. 3, pp. 481-502 | DOI | MR | Zbl
[12] Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J., Volume 109 (1988), pp. 125-149 | DOI | MR | Zbl
[13] Universal bounds on the torsion of elliptic curves, Proc. Lond. Math. Soc., Volume 33 (1976) no. 2, pp. 193-237 | DOI | MR | Zbl
[14] Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 36 (1972), pp. 19-66 | MR | Zbl
[15] Modular curves and the Eisenstein ideal, Publ. Math., Inst. Hautes Étud. Sci., Volume 47 (1977), pp. 33-186 | DOI | Numdam | Zbl
[16] Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math., Volume 124 (1996) no. 1-3, pp. 437-449 | DOI | MR | Zbl
[17] Torsion of rational elliptic curves over cubic fields and sporadic points on , Math. Res. Lett., Volume 23 (2016) no. 1, pp. 245-272 | DOI | MR | Zbl
[18] Rational points on certain elliptic modular curves, Analytic Number Theory (Proceedings of Symposia in Pure Mathematics), Volume 1972, American Mathematical Society, 1972, pp. 221-231 | Zbl
[19] Diophantine equations and modular forms, Bull. Am. Math. Soc., Volume 81 (1975), pp. 14-27 | MR | Zbl
[20] Torsion des courbes elliptiques sur les corps cubiques, Ann. Inst. Fourier, Volume 50 (2000) no. 3, pp. 723-749 | DOI | Numdam | MR | Zbl
[21] No 17-torsion on elliptic curves over cubic number fields, J. Théor. Nombres Bordeaux, Volume 15 (2003) no. 3, pp. 831-838 | DOI | MR | Zbl
[22] Schémas en groupes de type , Bull. Soc. Math. Fr., Volume 102 (1974), pp. 241-280 | DOI | MR | Zbl
[23] Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, 1, Mathematical Society of Japan, 1971 | MR | Zbl
[24] Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, 1994 | MR | Zbl
[25] Group schemes of prime order, Ann. Sci. Éc. Norm. Supér., Volume 3 (1970), pp. 1-21 | DOI | Numdam | MR | Zbl
[26] Magma (http://magma.maths.usyd.edu.au/magma/)
[27] On the cyclic torsion of elliptic curves over cubic number fields, J. Number Theory, Volume 183 (2018), pp. 291-308 | DOI | MR | Zbl
[28] Abelian varieties over finite fields, Ann. Sci. Éc. Norm. Supér., Volume 2 (1969), pp. 521-560 | DOI | Numdam | MR | Zbl
Cited by Sources: