In the late 1990s, Vatsal showed that a congruence modulo between two modular forms implied a congruence between their respective -adic -functions. We prove an analogous statement for both the double product and triple product -adic -functions, and : the former is cyclotomic in its nature, while the latter is over the weight-space. As a corollary, we derive transition formulae relating analytic -invariants of congruent Galois representations for , and for , respectively.
À la fin des années 1990, Vatsal a montré qu’une congruence modulo entre deux formes modulaires implique une congruence entre leurs fonctions -adiques. Nous prouvons des énoncés analogues pour les fonctions -adiques et associées aux produits double et triple de formes modulaires : la première est de nature cyclotomique, tandis que l’autre est définie sur l’espace des poids.
Comme corollaire, nous obtenons des formules de transition reliant les invariants analytiques des représentations de Galois congruentes pour et respectivement.
Revised:
Accepted:
Published online:
Mots-clés : Iwasawa theory, $p$-adic $L$-functions, automorphic forms
@article{JTNB_2021__33_3.1_733_0, author = {Delbourgo, Daniel and Gilmore, Hamish}, title = {Controlling $\lambda $-invariants for the double and triple product $p$-adic $L$-functions}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {733--778}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {3.1}, year = {2021}, doi = {10.5802/jtnb.1177}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1177/} }
TY - JOUR AU - Delbourgo, Daniel AU - Gilmore, Hamish TI - Controlling $\lambda $-invariants for the double and triple product $p$-adic $L$-functions JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 733 EP - 778 VL - 33 IS - 3.1 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1177/ DO - 10.5802/jtnb.1177 LA - en ID - JTNB_2021__33_3.1_733_0 ER -
%0 Journal Article %A Delbourgo, Daniel %A Gilmore, Hamish %T Controlling $\lambda $-invariants for the double and triple product $p$-adic $L$-functions %J Journal de théorie des nombres de Bordeaux %D 2021 %P 733-778 %V 33 %N 3.1 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.1177/ %R 10.5802/jtnb.1177 %G en %F JTNB_2021__33_3.1_733_0
Delbourgo, Daniel; Gilmore, Hamish. Controlling $\lambda $-invariants for the double and triple product $p$-adic $L$-functions. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 3.1, pp. 733-778. doi : 10.5802/jtnb.1177. http://archive.numdam.org/articles/10.5802/jtnb.1177/
[1] Variation of anticyclotomic Iwasawa invariants in Hida families, Algebra Number Theory, Volume 11 (2017) no. 10, pp. 2339-2368 | DOI | MR | Zbl
[2] Congruences of two-variable -adic -functions of congruent modular forms of different weights, Ramanujan J., Volume 43 (2017) no. 1, pp. 163-195 | DOI | MR
[3] On -adic -functions attached to motives over , Algebraic number theory (Advanced Studies in Pure Mathematics), Volume 17, Academic Press Inc., 1989, pp. 23-54 | DOI | MR
[4] Diagonal cycles and Euler systems II: the Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin -functions, J. Am. Math. Soc., Volume 30 (2017) no. 3, pp. 601-672 | DOI | MR
[5] Variation of the analytic -invariant over a solvable extension, Proc. Lond. Math. Soc., Volume 120 (2020) no. 6, pp. 918-960 | DOI | MR | Zbl
[6] Variation of the algebraic -invariant over a solvable extension, Math. Proc. Camb. Philos. Soc., Volume 170 (2021) no. 3, pp. 499-521 | DOI | MR
[7] Congruences modulo between -twisted Hasse-Weil -values, Trans. Am. Math. Soc., Volume 370 (2018) no. 11, pp. 8047-8080 | DOI | MR
[8] Heegner cycles and congruences between anticyclotomic -adic -functions over CM-extensions, New York J. Math., Volume 26 (2020), pp. 496-525 | MR
[9] Variation of Iwasawa invariants in Hida families, Invent. Math., Volume 163 (2006), pp. 523-580 | DOI | MR | Zbl
[10] Triple product -adic -function attached to -adic families of modular forms (2019) (https://arxiv.org/abs/1909.03165)
[11] -invariants and congruences for Galois representations of dimension 3, 4, and 8, Ph. D. Thesis, University of Waikato (New Zealand) (2020)
[12] On the Iwasawa invariants of elliptic curves, Invent. Math., Volume 142 (2000) no. 1, pp. 17-63 | DOI | MR | Zbl
[13] Heegner points and derivatives of -series, Invent. Math., Volume 84 (1986), pp. 225-320 | DOI | MR
[14] On -adic -functions of over totally real fields, Ann. Inst. Fourier, Volume 41 (1991) no. 2, pp. 311-391 | DOI | Numdam | MR
[15] Hida families and -adic triple product -functions, Am. J. Math., Volume 143 (2021) no. 2, pp. 411-532 | DOI | MR
[16] Four variable -adic triple product -functions and the trivial zero conjecture (2019) (https://arxiv.org/abs/1906.10474v2)
[17] On the location of poles of the triple -functions, Compos. Math., Volume 83 (1992) no. 2, pp. 187-237 | Numdam | MR
[18] Rankin-Eisenstein classes and explicit reciprocity laws, Camb. J. Math., Volume 5 (2017) no. 1, pp. 1-122 | DOI | MR
[19] Goldfeld’s conjecture and congruences between Heegner points, Forum Math. Sigma, Volume 7 (2019), e15, 80 pages | DOI | MR
[20] On -adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math., Volume 84 (1986), pp. 1-48 | DOI | MR
[21] Non-archimedean -functions of Siegel and Hilbert modular forms, Lecture Notes in Mathematics, 1471, Springer, 1991 | DOI | MR
[22] Congruence formula for certain dihedral twists, Trans. Am. Math. Soc., Volume 367 (2015) no. 5, pp. 3579-3598 | DOI | MR
[23] The special values of the zeta functions associated with cusp forms, Commun. Pure Appl. Math., Volume 29 (1976), pp. 783-804 | DOI | MR
[24] Canonical periods and congruence formulae, Duke Math. J., Volume 98 (1999) no. 2, pp. 397-419 | MR | Zbl
[25] Integral periods for modular forms, Ann. Math. Qué., Volume 37 (2013) no. 1, pp. 109-128 | DOI | MR
Cited by Sources: