À la fin des années 1990, Vatsal a montré qu’une congruence modulo
Comme corollaire, nous obtenons des formules de transition reliant les invariants
In the late 1990s, Vatsal showed that a congruence modulo
Révisé le :
Accepté le :
Publié le :
Mots-clés : Iwasawa theory,
@article{JTNB_2021__33_3.1_733_0, author = {Delbourgo, Daniel and Gilmore, Hamish}, title = {Controlling $\lambda $-invariants for the double and triple product $p$-adic $L$-functions}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {733--778}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {3.1}, year = {2021}, doi = {10.5802/jtnb.1177}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.1177/} }
TY - JOUR AU - Delbourgo, Daniel AU - Gilmore, Hamish TI - Controlling $\lambda $-invariants for the double and triple product $p$-adic $L$-functions JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 733 EP - 778 VL - 33 IS - 3.1 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1177/ DO - 10.5802/jtnb.1177 LA - en ID - JTNB_2021__33_3.1_733_0 ER -
%0 Journal Article %A Delbourgo, Daniel %A Gilmore, Hamish %T Controlling $\lambda $-invariants for the double and triple product $p$-adic $L$-functions %J Journal de théorie des nombres de Bordeaux %D 2021 %P 733-778 %V 33 %N 3.1 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1177/ %R 10.5802/jtnb.1177 %G en %F JTNB_2021__33_3.1_733_0
Delbourgo, Daniel; Gilmore, Hamish. Controlling $\lambda $-invariants for the double and triple product $p$-adic $L$-functions. Journal de théorie des nombres de Bordeaux, Tome 33 (2021) no. 3.1, pp. 733-778. doi : 10.5802/jtnb.1177. https://www.numdam.org/articles/10.5802/jtnb.1177/
[1] Variation of anticyclotomic Iwasawa invariants in Hida families, Algebra Number Theory, Volume 11 (2017) no. 10, pp. 2339-2368 | DOI | MR | Zbl
[2] Congruences of two-variable
[3] On
[4] Diagonal cycles and Euler systems II: the Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin
[5] Variation of the analytic
[6] Variation of the algebraic
[7] Congruences modulo
[8] Heegner cycles and congruences between anticyclotomic
[9] Variation of Iwasawa invariants in Hida families, Invent. Math., Volume 163 (2006), pp. 523-580 | DOI | MR | Zbl
[10] Triple product
[11]
[12] On the Iwasawa invariants of elliptic curves, Invent. Math., Volume 142 (2000) no. 1, pp. 17-63 | DOI | MR | Zbl
[13] Heegner points and derivatives of
[14] On
[15] Hida families and
[16] Four variable
[17] On the location of poles of the triple
[18] Rankin-Eisenstein classes and explicit reciprocity laws, Camb. J. Math., Volume 5 (2017) no. 1, pp. 1-122 | DOI | MR
[19] Goldfeld’s conjecture and congruences between Heegner points, Forum Math. Sigma, Volume 7 (2019), e15, 80 pages | DOI | MR
[20] On
[21] Non-archimedean
[22] Congruence formula for certain dihedral twists, Trans. Am. Math. Soc., Volume 367 (2015) no. 5, pp. 3579-3598 | DOI | MR
[23] The special values of the zeta functions associated with cusp forms, Commun. Pure Appl. Math., Volume 29 (1976), pp. 783-804 | DOI | MR
[24] Canonical periods and congruence formulae, Duke Math. J., Volume 98 (1999) no. 2, pp. 397-419 | MR | Zbl
[25] Integral periods for modular forms, Ann. Math. Qué., Volume 37 (2013) no. 1, pp. 109-128 | DOI | MR
- On the Iwasawa μ-invariant and λ-invariant associated to tensor products of newforms, Annales de l'Institut Fourier, Volume 74 (2024) no. 2, p. 451 | DOI:10.5802/aif.3593
Cité par 1 document. Sources : Crossref