Cet article fournit une introduction aux mesures d’Eisenstein, un outil puissant pour construire certaines fonctions
This paper provides an introduction to Eisenstein measures, a powerful tool for constructing certain
Révisé le :
Accepté le :
Publié le :
Mots-clés : Eisenstein measures,
@article{JTNB_2021__33_3.1_779_0, author = {Eischen, Ellen}, title = {An introduction to {Eisenstein} measures}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {779--808}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {3.1}, year = {2021}, doi = {10.5802/jtnb.1178}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.1178/} }
TY - JOUR AU - Eischen, Ellen TI - An introduction to Eisenstein measures JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 779 EP - 808 VL - 33 IS - 3.1 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1178/ DO - 10.5802/jtnb.1178 LA - en ID - JTNB_2021__33_3.1_779_0 ER -
%0 Journal Article %A Eischen, Ellen %T An introduction to Eisenstein measures %J Journal de théorie des nombres de Bordeaux %D 2021 %P 779-808 %V 33 %N 3.1 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1178/ %R 10.5802/jtnb.1178 %G en %F JTNB_2021__33_3.1_779_0
Eischen, Ellen. An introduction to Eisenstein measures. Journal de théorie des nombres de Bordeaux, Tome 33 (2021) no. 3.1, pp. 779-808. doi : 10.5802/jtnb.1178. https://www.numdam.org/articles/10.5802/jtnb.1178/
[1] Katz type
[2] On overconvergent Hilbert modular cusp forms, Arithmétique
[3] Families of differential operators for overconvergent Hilbert modular forms, 2021 (In preparation)
[4] Fonctions zeta
[5] EISENSTEIN ORIENTATION, 2009 (Typed notes available at http://www-math.mit.edu/~mbehrens/other/coredump.pdf)
[6] Transgressions of the Euler class and Eisenstein cohomology of
[7] Elements of Mathematics. Commutative algebra. Chapters 1–7, Springer, 1998, xxiv+625 pages (Translated from the French, Reprint of the 1989 English translation) | MR
[8] Higher Hida and Coleman theories on the modular curve (2020) | arXiv
[9] Hida theory over some unitary Shimura varieties without ordinary locus, Am. J. Math., Volume 143 (2021) no. 3, pp. 715-751 | DOI | MR | Zbl
[10] Doubling constructions and tensor product
[11]
[12] Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta
[13] Integral Eisenstein cocycles on
[14] Theorem, Astron. Nachr., Volume 17 (1840) no. 22, pp. 351-352 | DOI
[15] On
[16] On
[17] On
[18] Values of abelian
[19]
[20] A
[21] A
[22] Differential operators and families of automorphic forms on unitary groups of arbitrary signature, Doc. Math., Volume 23 (2018), pp. 445-495 | MR
[23]
[24]
[25]
[26] A theorem on the numerators of the Bernoulli numbers, Am. Math. Mon., Volume 97 (1990) no. 2, pp. 136-138 | DOI | MR
[27] Séries d’Eisenstein et fonctions
[28] Conjecture de Deligne et
[29] Lectures on Hilbert modular varieties and modular forms, CRM Monograph Series, 14, American Mathematical Society, 2002, x+270 pages (With the assistance of Marc-Hubert Nicole) | MR
[30] Modular sheaves of de Rham classes on Hilbert formal modular schemes for unramified primes (2020) | arXiv
[31] Iwasawa theory for
[32] Iwasawa theory for motives,
[33] Iwasawa theory and
[34] Special values of Hecke
[35] Special values of zeta functions attached to Siegel modular forms, Ann. Sci. Éc. Norm. Supér., Volume 14 (1981) no. 1, pp. 77-120 | DOI | Numdam | MR
[36] Über eine neue Begründung der Theorie der algebraischen Zahlen, J. Reine Angew. Math., Volume 128 (1905), pp. 1-32 | DOI | MR
[37] A
[38] On
[39]
[40] Topological modular forms, the Witten genus, and the theorem of the cube, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser (1995), pp. 554-565 | DOI | MR
[41] Algebraic topology and modular forms, Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), Higher Education Press (2002), pp. 291-317 | MR
[42] A short history on investigation of the special values of zeta and
[43] Analogies between number fields and function fields, Some Recent Advances in the Basic Sciences, Vol. 2 (Proc. Annual Sci. Conf., Belfer Grad. School Sci., Yeshiva Univ., New York, 1965-1966), Belfer Graduate School of Science, 1969, pp. 203-208 | MR
[44] On
[45]
[46]
[47] Über die Werte der Dedekindschen Zetafunktion, Math. Ann., Volume 145 (1961/62), pp. 265-272 | DOI | MR | Zbl
[48] A New
[49] Eine
[50] Allgemeiner Beweis des Fermatschen Satzes, daßdie Gleichung
[51] Bestimmung der Anzahl nicht äquivalenter Classen für die aus
[52] Über eine allgemeine Eigenschaft der rationalen Entwickelungscoefficienten einer bestimmten Gattung analytischer Functionen, J. Reine Angew. Math., Volume 41 (1851), pp. 368-372 | DOI | MR
[53]
[54] Non-cuspidal Hida theory for Siegel modular forms and trivial zeros of
[55] Higher Hida theory and
[56] Arithmetic of Weil curves, Invent. Math., Volume 25 (1974), pp. 1-61 | DOI | MR
[57] Class fields of abelian extensions of
[58] Two variable
[59] Higher coherent cohomology and
[60] The scalar product of modular forms, Proc. Lond. Math. Soc., Volume 2 (1952), pp. 198-217 | DOI | MR
[61] Compactifications de l’espace de modules de Hilbert–Blumenthal, Compos. Math., Volume 36 (1978) no. 3, pp. 255-335 | MR
[62]
[63] Formes modulaires et fonctions zêta
[64] A theta operator on Picard modular forms modulo an inert prime, Res. Math. Sci., Volume 3 (2016), 28, 65 pages | DOI | MR
[65] Theta operators on unitary Shimura varieties, Algebra Number Theory, Volume 13 (2019) no. 8, pp. 1829-1877 | DOI | MR
[66] On some arithmetic properties of modular forms of one and several variables, Ann. Math., Volume 102 (1975) no. 3, pp. 491-515 | DOI | MR
[67] The special values of the zeta functions associated with cusp forms, Commun. Pure Appl. Math., Volume 29 (1976) no. 6, pp. 783-804 | DOI | MR
[68] Arithmeticity in the theory of automorphic forms, Mathematical Surveys and Monographs, 82, American Mathematical Society, 2000, x+302 pages | MR
[69] Berechnung von Zetafunktionen an ganzzahligen Stellen, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., Volume 1969 (1969), pp. 87-102 | MR
[70] Über die Fourierschen Koeffizienten von Modulformen, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., Volume 1970 (1970), pp. 15-56 | MR
[71] Beweis eines Lehrsatzes, die Bernoullischen Zahlen betreffen, J. Reine Angew. Math., Volume 21 (1840), pp. 372-374 | DOI | MR
[72] De numeris Bernoullianis, Universitatsschrift, Erlangen, 1845
[73] Introduction to cyclotomic fields, Graduate Texts in Mathematics, 83, Springer, 1997, xiv+487 pages | DOI | MR
[74] Elliptic functions according to Eisenstein and Kronecker, Classics in Mathematics, Springer, 1999, viii+93 pages (Reprint of the 1976 original) | MR
Cité par Sources :