The main purpose of this note is to understand the arithmetic encoded in the special value of the -adic -function associated to a triple of modular forms of weights , in the case where the classical -function (which typically has sign ) does not vanish at its central critical point . When corresponds to an elliptic curve and the classical -function vanishes, the Elliptic Stark Conjecture of Darmon–Lauder–Rotger predicts that is either (when the order of vanishing of the complex -function is ) or related to logarithms of global points on and a certain Gross–Stark unit associated to (when the order of vanishing is exactly ). We complete the picture proposed by the Elliptic Stark Conjecture by providing a formula for the value in the case where .
L’objectif principal de cette note est de comprendre l’arithmétique encodée dans la valeur de la fonction -adique associée à un triplet de formes modulaires de poids , dans le cas où la fonction classique (qui est généralement de signe ) ne s’annule pas au point central critique . Lorsque correspond à une courbe elliptique et la fonction classique s’annule, la conjecture elliptique de Stark de Darmon–Lauder–Rotger prédit que soit la valeur est (lorsque l’ordre d’annulation de la fonction complexe est ), soit elle est liée aux logarithmes des points globaux sur et à une certaine unité de Gross–Stark associée à (lorsque l’ordre d’annulation est exactement ). Nous complétons la conjecture de Stark elliptique en donnant une formule pour la valeur dans le cas où .
Revised:
Accepted:
Published online:
Keywords: $p$-adic $L$-functions, Selmer groups, elliptic curves
@article{JTNB_2021__33_3.1_809_0, author = {Gatti, Francesca and Guitart, Xavier and Masdeu, Marc and Rotger, Victor}, title = {Special values of triple-product $p$-adic {L-functions} and non-crystalline diagonal classes}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {809--834}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {3.1}, year = {2021}, doi = {10.5802/jtnb.1179}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.1179/} }
TY - JOUR AU - Gatti, Francesca AU - Guitart, Xavier AU - Masdeu, Marc AU - Rotger, Victor TI - Special values of triple-product $p$-adic L-functions and non-crystalline diagonal classes JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 809 EP - 834 VL - 33 IS - 3.1 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.1179/ DO - 10.5802/jtnb.1179 LA - en ID - JTNB_2021__33_3.1_809_0 ER -
%0 Journal Article %A Gatti, Francesca %A Guitart, Xavier %A Masdeu, Marc %A Rotger, Victor %T Special values of triple-product $p$-adic L-functions and non-crystalline diagonal classes %J Journal de théorie des nombres de Bordeaux %D 2021 %P 809-834 %V 33 %N 3.1 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.1179/ %R 10.5802/jtnb.1179 %G en %F JTNB_2021__33_3.1_809_0
Gatti, Francesca; Guitart, Xavier; Masdeu, Marc; Rotger, Victor. Special values of triple-product $p$-adic L-functions and non-crystalline diagonal classes. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 3.1, pp. 809-834. doi : 10.5802/jtnb.1179. http://archive.numdam.org/articles/10.5802/jtnb.1179/
[1] An introduction to the conjecture of Bloch and Kato (Two lectures at the Clay Mathematical Institute Summer School, Honolulu, Hawaii, 2009, http://people.brandeis.edu/~jbellaic/BKHawaii5.pdf)
[2] A Rigid Analytic Gross–Zagier Formula and Arithmetic Applications, Ann. Math., Volume 146 (1997) no. 1, pp. 111-147 | DOI | MR | Zbl
[3] -functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I (Progress in Mathematics), Volume 86, Birkhäuser, 1990, pp. 333-400 | MR | Zbl
[4] Stark points and -adic iterated integrals attached to modular forms of weight one, Forum Math. Pi, Volume 3 (2015), e8, 95 pages | DOI | MR | Zbl
[5] Diagonal cycles and Euler systems I: A -adic Gross–Zagier formula, Ann. Sci. Éc. Norm. Supér., Volume 47 (2014) no. 4, pp. 779-832 | DOI | MR | Zbl
[6] Elliptic curves of rank two and generalised Kato classes, Res. Math. Sci., Volume 3 (2016) no. 1, p. 27 | DOI | MR | Zbl
[7] Diagonal cycles and Euler systems II: The Birch and Swinnerton–Dyer conjecture for Hasse–Weil–Artin -functions, J. Am. Math. Soc., Volume 30 (2017) no. 3, pp. 601-672 | DOI | MR | Zbl
[8] Stark–Heegner points and generalised Kato classes (2019) (preprint)
[9] Kolyvagin classes versus non-cristalline diagonal classes (2021) (https://arxiv.org/abs/2103.11492)
[10] Hida families and -adic triple product -functions, Am. J. Math., Volume 143 (2021) no. 2, pp. 411-532 | DOI | MR | Zbl
[11] Efficient computation of Rankin -adic -functions, Computations with modular forms (Contributions in Mathematical and Computational Sciences), Volume 6, Springer, 2014, pp. 181-200 | DOI | MR | Zbl
[12] Kolyvagin systems, Mem. Am. Math. Soc., Volume 168 (2004) no. 799, p. viii+96 | DOI | MR | Zbl
[13] On the -adic Eichler–Shimura isomorphism for -adic cusp forms, J. Reine Angew. Math., Volume 463 (1995), pp. 49-98 | DOI | MR | Zbl
[14] SageMath, the Sage Mathematics Software System (Version 9.1) (2020) (http://www.sagemath.org)
Cited by Sources: