Special values of triple-product p-adic L-functions and non-crystalline diagonal classes
Journal de théorie des nombres de Bordeaux, Tome 33 (2021) no. 3.1, pp. 809-834.

L’objectif principal de cette note est de comprendre l’arithmétique encodée dans la valeur de la fonction L p-adique Łpg(f,g,h) associée à un triplet de formes modulaires (f,g,h) de poids (2,1,1), dans le cas où la fonction L classique L(fgh,s) (qui est généralement de signe +1) ne s’annule pas au point central critique s=1. Lorsque f correspond à une courbe elliptique E/ et la fonction L classique s’annule, la conjecture elliptique de Stark de Darmon–Lauder–Rotger prédit que soit la valeur Łpg(f,g,h)(2,1,1) est 0 (lorsque l’ordre d’annulation de la fonction L complexe est >2), soit elle est liée aux logarithmes des points globaux sur E et à une certaine unité de Gross–Stark associée à g (lorsque l’ordre d’annulation est exactement 2). Nous complétons la conjecture de Stark elliptique en donnant une formule pour la valeur Łpg(f,g,h)(2,1,1) dans le cas où L(fgh,1)0.

The main purpose of this note is to understand the arithmetic encoded in the special value of the p-adic L-function Łpg(f,g,h) associated to a triple of modular forms (f,g,h) of weights (2,1,1), in the case where the classical L-function L(fgh,s) (which typically has sign +1) does not vanish at its central critical point s=1. When f corresponds to an elliptic curve E/ and the classical L-function vanishes, the Elliptic Stark Conjecture of Darmon–Lauder–Rotger predicts that Łpg(f,g,h)(2,1,1) is either 0 (when the order of vanishing of the complex L-function is >2) or related to logarithms of global points on E and a certain Gross–Stark unit associated to g (when the order of vanishing is exactly 2). We complete the picture proposed by the Elliptic Stark Conjecture by providing a formula for the value Łpg(f,g,h)(2,1,1) in the case where L(fgh,1)0.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1179
Classification : 11G40, 11F85
Mots-clés : p-adic L-functions, Selmer groups, elliptic curves
Gatti, Francesca 1 ; Guitart, Xavier 2 ; Masdeu, Marc 3 ; Rotger, Victor 1

1 Departament de Matemàtiques Universitat Politècnica de Catalunya Edifici Omega, Campus Nord Carrer de Jordi Girona 1–3 08034 Barcelona, Catalonia
2 Departament de Matemàtiques i Informàtica Universitat de Barcelona Gran via de les Corts Catalanes 585 08007 Barcelona, Catalonia
3 Departament de Matemàtiques Universitat Autònoma de Barcelona Edicifi C, Universitat Autònoma de Barcelona 08193 Bellaterra, Catalonia
@article{JTNB_2021__33_3.1_809_0,
     author = {Gatti, Francesca and Guitart, Xavier and Masdeu, Marc and Rotger, Victor},
     title = {Special values of triple-product $p$-adic {L-functions} and non-crystalline diagonal classes},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {809--834},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {33},
     number = {3.1},
     year = {2021},
     doi = {10.5802/jtnb.1179},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jtnb.1179/}
}
TY  - JOUR
AU  - Gatti, Francesca
AU  - Guitart, Xavier
AU  - Masdeu, Marc
AU  - Rotger, Victor
TI  - Special values of triple-product $p$-adic L-functions and non-crystalline diagonal classes
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2021
SP  - 809
EP  - 834
VL  - 33
IS  - 3.1
PB  - Société Arithmétique de Bordeaux
UR  - https://www.numdam.org/articles/10.5802/jtnb.1179/
DO  - 10.5802/jtnb.1179
LA  - en
ID  - JTNB_2021__33_3.1_809_0
ER  - 
%0 Journal Article
%A Gatti, Francesca
%A Guitart, Xavier
%A Masdeu, Marc
%A Rotger, Victor
%T Special values of triple-product $p$-adic L-functions and non-crystalline diagonal classes
%J Journal de théorie des nombres de Bordeaux
%D 2021
%P 809-834
%V 33
%N 3.1
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.1179/
%R 10.5802/jtnb.1179
%G en
%F JTNB_2021__33_3.1_809_0
Gatti, Francesca; Guitart, Xavier; Masdeu, Marc; Rotger, Victor. Special values of triple-product $p$-adic L-functions and non-crystalline diagonal classes. Journal de théorie des nombres de Bordeaux, Tome 33 (2021) no. 3.1, pp. 809-834. doi : 10.5802/jtnb.1179. https://www.numdam.org/articles/10.5802/jtnb.1179/

[1] Belaïche, Joël An introduction to the conjecture of Bloch and Kato (Two lectures at the Clay Mathematical Institute Summer School, Honolulu, Hawaii, 2009, http://people.brandeis.edu/~jbellaic/BKHawaii5.pdf)

[2] Bertolini, Massimo; Darmon, Henri A Rigid Analytic Gross–Zagier Formula and Arithmetic Applications, Ann. Math., Volume 146 (1997) no. 1, pp. 111-147 | DOI | MR | Zbl

[3] Bloch, Spencer; Kato, Kazuya L-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I (Progress in Mathematics), Volume 86, Birkhäuser, 1990, pp. 333-400 | MR | Zbl

[4] Darmon, Henri; Lauder, Alan; Rotger, Victor Stark points and p-adic iterated integrals attached to modular forms of weight one, Forum Math. Pi, Volume 3 (2015), e8, 95 pages | DOI | MR | Zbl

[5] Darmon, Henri; Rotger, Victor Diagonal cycles and Euler systems I: A p-adic Gross–Zagier formula, Ann. Sci. Éc. Norm. Supér., Volume 47 (2014) no. 4, pp. 779-832 | DOI | MR | Zbl

[6] Darmon, Henri; Rotger, Victor Elliptic curves of rank two and generalised Kato classes, Res. Math. Sci., Volume 3 (2016) no. 1, p. 27 | DOI | MR | Zbl

[7] Darmon, Henri; Rotger, Victor Diagonal cycles and Euler systems II: The Birch and Swinnerton–Dyer conjecture for Hasse–Weil–Artin L-functions, J. Am. Math. Soc., Volume 30 (2017) no. 3, pp. 601-672 | DOI | MR | Zbl

[8] Darmon, Henri; Rotger, Victor Stark–Heegner points and generalised Kato classes (2019) (preprint)

[9] Gatti, Francesca; Rotger, Victor Kolyvagin classes versus non-cristalline diagonal classes (2021) (https://arxiv.org/abs/2103.11492)

[10] Hsieh, Ming-Lun Hida families and p-adic triple product L-functions, Am. J. Math., Volume 143 (2021) no. 2, pp. 411-532 | DOI | MR | Zbl

[11] Lauder, Alan Efficient computation of Rankin p-adic L-functions, Computations with modular forms (Contributions in Mathematical and Computational Sciences), Volume 6, Springer, 2014, pp. 181-200 | DOI | MR | Zbl

[12] Mazur, Barry; Rubin, Karl Kolyvagin systems, Mem. Am. Math. Soc., Volume 168 (2004) no. 799, p. viii+96 | DOI | MR | Zbl

[13] Ohta, Masami On the p-adic Eichler–Shimura isomorphism for Λ-adic cusp forms, J. Reine Angew. Math., Volume 463 (1995), pp. 49-98 | DOI | MR | Zbl

[14] The Sage Developers SageMath, the Sage Mathematics Software System (Version 9.1) (2020) (http://www.sagemath.org)

Cité par Sources :