L’objectif principal de cette note est de comprendre l’arithmétique encodée dans la valeur de la fonction
The main purpose of this note is to understand the arithmetic encoded in the special value of the
Révisé le :
Accepté le :
Publié le :
Mots-clés :
@article{JTNB_2021__33_3.1_809_0, author = {Gatti, Francesca and Guitart, Xavier and Masdeu, Marc and Rotger, Victor}, title = {Special values of triple-product $p$-adic {L-functions} and non-crystalline diagonal classes}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {809--834}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {3.1}, year = {2021}, doi = {10.5802/jtnb.1179}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.1179/} }
TY - JOUR AU - Gatti, Francesca AU - Guitart, Xavier AU - Masdeu, Marc AU - Rotger, Victor TI - Special values of triple-product $p$-adic L-functions and non-crystalline diagonal classes JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 809 EP - 834 VL - 33 IS - 3.1 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1179/ DO - 10.5802/jtnb.1179 LA - en ID - JTNB_2021__33_3.1_809_0 ER -
%0 Journal Article %A Gatti, Francesca %A Guitart, Xavier %A Masdeu, Marc %A Rotger, Victor %T Special values of triple-product $p$-adic L-functions and non-crystalline diagonal classes %J Journal de théorie des nombres de Bordeaux %D 2021 %P 809-834 %V 33 %N 3.1 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1179/ %R 10.5802/jtnb.1179 %G en %F JTNB_2021__33_3.1_809_0
Gatti, Francesca; Guitart, Xavier; Masdeu, Marc; Rotger, Victor. Special values of triple-product $p$-adic L-functions and non-crystalline diagonal classes. Journal de théorie des nombres de Bordeaux, Tome 33 (2021) no. 3.1, pp. 809-834. doi : 10.5802/jtnb.1179. https://www.numdam.org/articles/10.5802/jtnb.1179/
[1] An introduction to the conjecture of Bloch and Kato (Two lectures at the Clay Mathematical Institute Summer School, Honolulu, Hawaii, 2009, http://people.brandeis.edu/~jbellaic/BKHawaii5.pdf)
[2] A Rigid Analytic Gross–Zagier Formula and Arithmetic Applications, Ann. Math., Volume 146 (1997) no. 1, pp. 111-147 | DOI | MR | Zbl
[3]
[4] Stark points and
[5] Diagonal cycles and Euler systems I: A
[6] Elliptic curves of rank two and generalised Kato classes, Res. Math. Sci., Volume 3 (2016) no. 1, p. 27 | DOI | MR | Zbl
[7] Diagonal cycles and Euler systems II: The Birch and Swinnerton–Dyer conjecture for Hasse–Weil–Artin
[8] Stark–Heegner points and generalised Kato classes (2019) (preprint)
[9] Kolyvagin classes versus non-cristalline diagonal classes (2021) (https://arxiv.org/abs/2103.11492)
[10] Hida families and
[11] Efficient computation of Rankin
[12] Kolyvagin systems, Mem. Am. Math. Soc., Volume 168 (2004) no. 799, p. viii+96 | DOI | MR | Zbl
[13] On the
[14] SageMath, the Sage Mathematics Software System (Version 9.1) (2020) (http://www.sagemath.org)
Cité par Sources :