In this paper, we discuss variations on the Brocard-Ramanujan Diophantine equation.
Dans cet article, nous étudions quelques variations sur l’équation diophantienne de Brocard-Ramanujan.
@article{JTNB_2008__20_2_353_0, author = {Kihel, Omar and Luca, Florian}, title = {Variants of the {Brocard-Ramanujan} equation}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {353--363}, publisher = {Universit\'e Bordeaux 1}, volume = {20}, number = {2}, year = {2008}, doi = {10.5802/jtnb.631}, zbl = {1171.11020}, mrnumber = {2477508}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.631/} }
TY - JOUR AU - Kihel, Omar AU - Luca, Florian TI - Variants of the Brocard-Ramanujan equation JO - Journal de théorie des nombres de Bordeaux PY - 2008 SP - 353 EP - 363 VL - 20 IS - 2 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.631/ DO - 10.5802/jtnb.631 LA - en ID - JTNB_2008__20_2_353_0 ER -
%0 Journal Article %A Kihel, Omar %A Luca, Florian %T Variants of the Brocard-Ramanujan equation %J Journal de théorie des nombres de Bordeaux %D 2008 %P 353-363 %V 20 %N 2 %I Université Bordeaux 1 %U http://archive.numdam.org/articles/10.5802/jtnb.631/ %R 10.5802/jtnb.631 %G en %F JTNB_2008__20_2_353_0
Kihel, Omar; Luca, Florian. Variants of the Brocard-Ramanujan equation. Journal de théorie des nombres de Bordeaux, Volume 20 (2008) no. 2, pp. 353-363. doi : 10.5802/jtnb.631. http://archive.numdam.org/articles/10.5802/jtnb.631/
[1] D. Berend, C. Osgood, On the equation and a question of Erdős. J. Number Theory 42 (1992), no. 2, 189–193. | MR | Zbl
[2] D. Berend, J.E. Harmse, On polynomial-factorial diophantine equations. Trans. Amer. Math. Soc. 358 (2005), no 4, 1741–1779. | MR | Zbl
[3] B.C. Berndt, W.F. Galway, On the Brocard-Ramanujan Diophantine equation . The Ramanujan Journal 4 (2000), 41–42. | MR | Zbl
[4] H. Brocard, Question 166. Nouv. Corresp. Math. 2 (1876), 287.
[5] H. Brocard, Question 1532. Nouv. Ann. Math. 4 (1885), 291.
[6] A. Dabrowski, On the diophantine equation . Nieuw Arch. Wisk. 14 (1996), 321–324. | MR | Zbl
[7] P. Erdős, R. Obláth, Über diophantische Gleichungen der Form und . Acta Szeged 8 (1937), 241–255. | JFM | Zbl
[8] A. Gérardin, Contribution à l’étude de l’équation . Nouv. Ann. Math. 6 (4) (1906), 222–226. | EuDML | JFM | Numdam
[9] H. Gupta, On a Brocard-Ramanujan problem. Math. Student 3 (1935), 71. | JFM
[10] E. Landau, Handbuch der Lehre von der verteilung der Primzahlen, 3rd Edition. Chelsea Publ. Co., 1974.
[11] F. Luca, The Diophantine equation and a result of M. Overholt. Glas. Mat. Ser. III 37 (57) no. 2 (2002), 269–273. | MR | Zbl
[12] H.L. Montogomery, R.C. Vaughan, The large sieve. Mathematika 20 (1973), 119–134. | MR | Zbl
[13] M. Overholt, The diophantine equation . Bull. London Math. Soc. 25 (1993), 104. | MR | Zbl
[14] R. M. Pollack, H. N. Shapiro, The next to last case of a factorial diophantine equation. Comm. Pure Appl. Math. 26 (1973), 313–325. | MR | Zbl
[15] S. Ramanujan, Question 469. J. Indian Math. Soc. 5 (1913), 59.
[16] S. Ramanujan, Collected papers. New York, 1962.
[17] S. Wolfram, Math World. http://mathworld.wolfram.com/WilsonTheorem.html
Cited by Sources: