During the last decade, several quite unexpected applications of the Schmidt Subspace Theorem were found. We survey some of these, with a special emphasize on the consequences of quantitative statements of this theorem, in particular regarding transcendence questions.
De nouvelles applications du théorème du sous-espace de Wolfgang Schmidt, certaines assez inattendues, ont été trouvées lors de la dernière décennie. Nous en présentons quelques-unes, en insistant tout particulièrement sur les conséquences des versions quantitatives de ce théorème, notamment concernant des questions de transcendance.
@article{JTNB_2011__23_1_35_0, author = {Bugeaud, Yann}, title = {Quantitative versions of the {Subspace} {Theorem} and applications}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {35--57}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {23}, number = {1}, year = {2011}, doi = {10.5802/jtnb.749}, zbl = {1272.11089}, mrnumber = {2780618}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.749/} }
TY - JOUR AU - Bugeaud, Yann TI - Quantitative versions of the Subspace Theorem and applications JO - Journal de théorie des nombres de Bordeaux PY - 2011 SP - 35 EP - 57 VL - 23 IS - 1 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.749/ DO - 10.5802/jtnb.749 LA - en ID - JTNB_2011__23_1_35_0 ER -
%0 Journal Article %A Bugeaud, Yann %T Quantitative versions of the Subspace Theorem and applications %J Journal de théorie des nombres de Bordeaux %D 2011 %P 35-57 %V 23 %N 1 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.749/ %R 10.5802/jtnb.749 %G en %F JTNB_2011__23_1_35_0
Bugeaud, Yann. Quantitative versions of the Subspace Theorem and applications. Journal de théorie des nombres de Bordeaux, Volume 23 (2011) no. 1, pp. 35-57. doi : 10.5802/jtnb.749. http://archive.numdam.org/articles/10.5802/jtnb.749/
[1] B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers, II. Continued fractions, Acta Math. 195 (2005), 1–20. | MR | Zbl
[2] B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers I. Expansions in integer bases. Ann. of Math. 165 (2007), 547–565. | MR | Zbl
[3] B. Adamczewski and Y. Bugeaud, On the Maillet–Baker continued fractions. J. reine angew. Math. 606 (2007), 105–121. | MR | Zbl
[4] B. Adamczewski and Y. Bugeaud, Palindromic continued fractions. Ann. Inst. Fourier (Grenoble) 57 (2007), 1557–1574. | EuDML | Numdam | MR | Zbl
[5] B. Adamczewski et Y. Bugeaud, Mesures de transcendance et aspects quantitatifs de la méthode de Thue–Siegel–Roth–Schmidt. Proc. London Math. Soc. 101 (2010), 1–31. | MR | Zbl
[6] B. Adamczewski et Y. Bugeaud, Nombres réels de complexité sous-linéaire : mesures d’irrationalité et de transcendance. J. reine angew. Math. À paraître. | MR | Zbl
[7] B. Adamczewski, Y. Bugeaud, and L. Davison, Continued fractions and transcendental numbers. Ann. Inst. Fourier (Grenoble) 56 (2006), 2093–2113. | EuDML | Numdam | MR | Zbl
[8] B. Adamczewski, Y. Bugeaud et F. Luca, Sur la complexité des nombres algébriques. C. R. Acad. Sci. Paris 339 (2004), 11–14. | MR | Zbl
[9] P. B. Allen, On the multiplicity of linear recurrence sequences. J. Number Theory 126 (2007), 212–216. | MR | Zbl
[10] J.-P. Allouche, Nouveaux résultats de transcendance de réels à développements non aléatoire. Gaz. Math. 84 (2000), 19–34. | MR
[11] F. Amoroso and E. Viada, Small points on subvarieties of a torus. Duke Math. J. 150 (2009), 407–442. | MR
[12] F. Amoroso and E. Viada, On the zeros of linear recurrence sequences. Preprint.
[13] A. Baker, On Mahler’s classification of transcendental numbers. Acta Math. 111 (1964), 97–120. | MR | Zbl
[14] Yu. Bilu, The many faces of the subspace theorem [after Adamczewski, Bugeaud, Corvaja, Zannier]. Séminaire Bourbaki. Vol. 2006/2007. Astérisque No. 317 (2008), Exp. No. 967, vii, 1–38. | Numdam | MR
[15] E. Bombieri and W. Gubler, Heights in Diophantine geometry. New Mathematical Monographs, vol. 4, Cambridge University Press, 2006. | MR | Zbl
[16] Y. Bugeaud, Approximation by algebraic numbers. Cambridge Tracts in Mathematics 160, Cambridge, 2004. | MR | Zbl
[17] Y. Bugeaud, Extensions of the Cugiani-Mahler Theorem. Ann. Scuola Normale Superiore di Pisa 6 (2007), 477–498. | Numdam | MR | Zbl
[18] Y. Bugeaud, An explicit lower bound for the block complexity of an algebraic number. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19 (2008), 229–235. | MR
[19] Y. Bugeaud, On the approximation to algebraic numbers by algebraic numbers. Glas. Mat. 44 (2009), 323–331. | MR | Zbl
[20] Y. Bugeaud, P. Corvaja, and U. Zannier, An upper bound for the G.C.D. of and . Math. Z. 243 (2003), 79–84. | MR | Zbl
[21] Y. Bugeaud and J.-H. Evertse, On two notions of complexity of algebraic numbers. Acta Arith. 133 (2008), 221–250. | MR
[22] Y. Bugeaud and J.-H. Evertse, Approximation of complex algebraic numbers by algebraic numbers of bounded degree. Ann. Scuola Normale Superiore di Pisa 8 (2009), 333–368. | Numdam | MR | Zbl
[23] Y. Bugeaud and F. Luca, A quantitative lower bound for the greatest prime factor of . Acta Arith. 114 (2004), 275–294. | MR | Zbl
[24] P. Bundschuh und A. Pethő, Zur Transzendenz gewisser Reihen. Monatsh. Math. 104 (1987), 199–223. | MR | Zbl
[25] P. Corvaja and U. Zannier, Diophantine equations with power sums and universal Hilbert sets. Indag. Math. (N.S.) 9 (1998), 317–332. | MR | Zbl
[26] P. Corvaja and U. Zannier, Some new applications of the subspace theorem. Compositio Math. 131 (2002), 319–340. | MR | Zbl
[27] P. Corvaja and U. Zannier, On the greatest prime factor of . Proc. Amer. Math. Soc. 131 (2003), 1705–1709. | MR | Zbl
[28] M. Cugiani, Sull’approssimazione di numeri algebrici mediante razionali. Collectanea Mathematica, Pubblicazioni dell’Istituto di matematica dell’Università di Milano 169, Ed. C. Tanburini, Milano, pagg. 5 (1958).
[29] M. Cugiani, Sulla approssimabilità dei numeri algebrici mediante numeri razionali. Ann. Mat. Pura Appl. 48 (1959), 135–145. | MR | Zbl
[30] M. Cugiani, Sull’approssimabilità di un numero algebrico mediante numeri algebrici di un corpo assegnato. Boll. Un. Mat. Ital. 14 (1959), 151–162. | MR | Zbl
[31] H. Davenport and K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 160–167. | MR | Zbl
[32] E. Dubois et G. Rhin, Approximations rationnelles simultanées de nombres algébriques réels et de nombres algébriques -adiques. In: Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, 1974), pp. 211–227. Astérisque, Nos. 24–25, Soc. Math. France, Paris, 1975. | Numdam | MR | Zbl
[33] J.-H. Evertse, On sums of -units and linear recurrences. Compositio Math. 53 (1984), 225–244. | Numdam | MR | Zbl
[34] J.-H. Evertse, An explicit version of Faltings’ product theorem and an improvement of Roth’s lemma. Acta Arith. 73 (1995), 215–248. | MR | Zbl
[35] J.-H. Evertse, The number of algebraic numbers of given degree approximating a given algebraic number. In: Analytic number theory (Kyoto, 1996), 53–83, London Math. Soc. Lecture Note Ser. 247, Cambridge Univ. Press, Cambridge, 1997. | MR | Zbl
[36] J.-H. Evertse, On the Quantitative Subspace Theorem. Zapiski Nauchnyk Seminarov POMI 377 (2010), 217–240.
[37] J.-H. Evertse and R. G. Ferretti, A further quantitative improvement of the Absolute Subspace Theorem. Preprint.
[38] J.-H. Evertse and K. Győry, Finiteness criteria for decomposable form equations. Acta Arith. 50 (1988), 357–379. | MR | Zbl
[39] J.-H. Evertse and K. Győry, The number of families of solutions of decomposable form equations. Acta Arith. 80 (1997), 367–394. | MR | Zbl
[40] J.-H. Evertse, K. Győry, C. L. Stewart, and R. Tijdeman, On -unit equations in two unknowns. Invent. Math. 92 (1988), 461–477. | MR | Zbl
[41] J.-H. Evertse, K. Győry, C. L. Stewart, and R. Tijdeman, -unit equations and their applications. In: New advances in transcendence theory (Durham, 1986), 110–174, Cambridge Univ. Press, Cambridge, 1988. | MR | Zbl
[42] J.-H. Evertse and H.P. Schlickewei, A quantitative version of the Absolute Subspace Theorem. J. reine angew. Math. 548 (2002), 21–127. | MR | Zbl
[43] J.-H. Evertse, H.P. Schlickewei, and W. M. Schmidt, Linear equations in variables which lie in a multiplicative group. Ann. of Math. 155 (2002), 807–836. | MR | Zbl
[44] S. Ferenczi and Ch. Mauduit, Transcendence of numbers with a low complexity expansion. J. Number Theory 67 (1997), 146–161. | MR | Zbl
[45] K. Győry, Some recent applications of -unit equations. Journées Arithmétiques, 1991 (Geneva). Astérisque No. 209 (1992), 11, 17–38. | Numdam | MR | Zbl
[46] K. Győry, On the numbers of families of solutions of systems of decomposable form equations. Publ. Math. Debrecen 42 (1993), 65–101. | MR | Zbl
[47] K. Győry, On the irreducibility of neighbouring polynomials. Acta Arith. 67 (1994), 283–294. | MR | Zbl
[48] K. Győry, A. Sárközy and C. L. Stewart, On the number of prime factors of integers of the form . Acta Arith. 74 (1996), 365–385. | MR | Zbl
[49] S. Hernández and F. Luca, On the largest prime factor of . Bol. Soc. Mat. Mexicana 9 (2003), 235–244. | MR | Zbl
[50] J. F. Koksma, Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen. Monatsh. Math. Phys. 48 (1939), 176–189. | MR | Zbl
[51] M. Laurent, Équations diophantiennes exponentielles. Invent. Math. 78 (1984), 299–327. | MR | Zbl
[52] K. Mahler, Zur Approximation der Exponentialfunktionen und des Logarithmus. I, II. J. reine angew. Math. 166 (1932), 118–150. | Zbl
[53] K. Mahler, Lectures on Diophantine approximation, Part 1: -adic numbers and Roth’s theorem. University of Notre Dame, Ann Arbor, 1961. | MR | Zbl
[54] K. Mahler, Some suggestions for further research. Bull. Austral. Math. Soc. 29 (1984), 101–108. | MR | Zbl
[55] M. Mignotte, Quelques remarques sur l’approximation rationnelle des nombres algébriques. J. reine angew. Math. 268/269 (1974), 341–347. | MR | Zbl
[56] M. Mignotte, An application of W. Schmidt’s theorem: transcendental numbers and golden number. Fibonacci Quart. 15 (1977), 15–16. | MR | Zbl
[57] A. J. van der Poorten and H. P. Schlickewei, The growth condition for recurrence sequences. Macquarie Univ. Math. Rep. 82–0041, North Ryde, Australia (1982).
[58] D. Ridout, Rational approximations to algebraic numbers. Mathematika 4 (1957), 125–131. | MR | Zbl
[59] K. F. Roth, Rational approximations to algebraic numbers. Mathematika 2 (1955), 1–20; corrigendum, 168. | MR | Zbl
[60] H. P. Schlickewei, Die -adische Verallgemeinerung des Satzes von Thue-Siegel-Roth-Schmidt. J. reine angew. Math. 288 (1976), 86–105. | MR | Zbl
[61] H. P. Schlickewei, Linearformen mit algebraischen koeffizienten. Manuscripta Math. 18 (1976), 147–185. | MR | Zbl
[62] H. P. Schlickewei, The -adic Thue-Siegel-Roth-Schmidt theorem. Arch. Math. (Basel) 29 (1977), 267–270. | MR | Zbl
[63] W. M. Schmidt, Über simultane Approximation algebraischer Zahlen durch Rationale. Acta Math. 114 (1965) 159–206. | MR | Zbl
[64] W. M. Schmidt, On simultaneous approximations of two algebraic numbers by rationals. Acta Math. 119 (1967), 27–50. | MR | Zbl
[65] W. M. Schmidt, Simultaneous approximations to algebraic numbers by rationals. Acta Math. 125 (1970), 189–201. | MR | Zbl
[66] W. M. Schmidt, Norm form equations. Ann. of Math. 96 (1972), 526–551. | MR | Zbl
[67] W. M. Schmidt, Diophantine Approximation. Lecture Notes in Mathematics 785, Springer, 1980. | MR | Zbl
[68] W. M. Schmidt, The subspace theorem in Diophantine approximation. Compositio Math. 69 (1989), 121–173. | Numdam | MR | Zbl
[69] W. M. Schmidt, The number of solutions of norm form equations. Trans. Amer. Math. Soc. 317 (1990), 197–227. | MR | Zbl
[70] W. M. Schmidt, Diophantine approximations and Diophantine equations. Lecture Notes in Mathematics 1467, Springer, 1991. | MR | Zbl
[71] W. M. Schmidt, Zeros of linear recurrence sequences. Publ. Math. Debrecen 56 (2000), 609–630. | MR | Zbl
[72] Th. Schneider, Über die Approximation algebraischer Zahlen, J. reine angew. Math. 175 (1936), 182–192.
[73] G. Troi and U. Zannier, Note on the density constant in the distribution of self-numbers. II. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 2 (1999), 397–399. | MR | Zbl
[74] U. Zannier, Some applications of diophantine approximation to diophantine equations (with special emphasis on the Schmidt subspace theorem). Forum, Udine, 2003.
Cited by Sources: