Let be a finite extension of discrete valuation rings of characteristic , and suppose that the corresponding extension of fields of fractions is separable and is -Galois for some -Hopf algebra . Let be the different of . We show that if is totally ramified and its degree is a power of , then any element of with generates as an -module. This criterion is best possible. These results generalise to the Hopf-Galois situation recent work of G. G. Elder for Galois extensions.
Soit une extension finie d’anneaux de valuation discrète de caractéristique , et supposons que l’extension correspondante des corps de fractions soit séparable et -Galoisienne pour une -algèbre de Hopf . Soit la différente de . Nous montrons que si est totalement ramifiée et que son degré est une puissance de alors tout élément de avec engendre comme -module. Ce critère est le meilleur possible. Ces résultats généralisent à la situation Hopf-Galoisienne un travail récent de G. G. Elder pour les extensions Galoisiennes.
Keywords: Normal basis, Hopf-Galois extensions, local fields
@article{JTNB_2011__23_1_59_0, author = {Byott, Nigel P.}, title = {A valuation criterion for normal basis generators of {Hopf-Galois} extensions in characteristic $p$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {59--70}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {23}, number = {1}, year = {2011}, doi = {10.5802/jtnb.750}, zbl = {1278.11103}, mrnumber = {2780619}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.750/} }
TY - JOUR AU - Byott, Nigel P. TI - A valuation criterion for normal basis generators of Hopf-Galois extensions in characteristic $p$ JO - Journal de théorie des nombres de Bordeaux PY - 2011 SP - 59 EP - 70 VL - 23 IS - 1 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.750/ DO - 10.5802/jtnb.750 LA - en ID - JTNB_2011__23_1_59_0 ER -
%0 Journal Article %A Byott, Nigel P. %T A valuation criterion for normal basis generators of Hopf-Galois extensions in characteristic $p$ %J Journal de théorie des nombres de Bordeaux %D 2011 %P 59-70 %V 23 %N 1 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.750/ %R 10.5802/jtnb.750 %G en %F JTNB_2011__23_1_59_0
Byott, Nigel P. A valuation criterion for normal basis generators of Hopf-Galois extensions in characteristic $p$. Journal de théorie des nombres de Bordeaux, Volume 23 (2011) no. 1, pp. 59-70. doi : 10.5802/jtnb.750. http://archive.numdam.org/articles/10.5802/jtnb.750/
[1] N. P. Byott, Integral Hopf-Galois structures on degree extensions of -adic fields. J. Algebra 248 (2002), 334–365. | MR | Zbl
[2] N. P. Byott and G. G. Elder, A valuation criterion for normal bases in elementary abelian extensions. Bull. London Math. Soc. 39 (2007), 705–708. | MR | Zbl
[3] L. N. Childs, Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory. Mathematical Surveys and Monographs 80, American Mathematical Society, 2000. | MR | Zbl
[4] G. G. Elder, A valuation criterion for normal basis generators in local fields of characteristic . Arch. Math. 94 (2010), 43–47. | MR
[5] C. Greither and B. Pareigis, Hopf Galois theory for separable field extensions. J. Algebra 106 (1987), 239–258. | MR | Zbl
[6] J.-P. Serre, Local Fields. Graduate Texts in Mathematics 67, Springer, 1979. | MR | Zbl
[7] J.-P. Serre, Linear Representations of Finite Groups. Graduate Texts in Mathematics 42, Springer, 1977. | MR | Zbl
[8] H. Stichtenoth, Algebraic Function Fields and Codes. Springer, 1993. | MR | Zbl
[9] L. Thomas, A valuation criterion for normal basis generators in equal positive characteristic. J. Algebra 320 (2008), 3811–3820. | MR
Cited by Sources: