The parabolic-parabolic Keller-Segel equation
Séminaire Laurent Schwartz — EDP et applications (2014-2015), Exposé no. 18, 17 p.

I present in this note recent results on the uniqueness and stability for the parabolic-parabolic Keller-Segel equation on the plane, obtained in collaboration with S. Mischler in [11].

@article{SLSEDP_2014-2015____A18_0,
     author = {Carrapatoso, Kleber},
     title = {The parabolic-parabolic Keller-Segel equation},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:18},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2014-2015},
     doi = {10.5802/slsedp.76},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/slsedp.76/}
}
Carrapatoso, Kleber. The parabolic-parabolic Keller-Segel equation. Séminaire Laurent Schwartz — EDP et applications (2014-2015), Exposé no. 18, 17 p. doi : 10.5802/slsedp.76. http://archive.numdam.org/articles/10.5802/slsedp.76/

[1] W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math. (2) 138 (1993), no. 1, 213–242. | MR 1230930 | Zbl 0826.58042

[2] M. Ben-Artzi, Global solutions of two-dimensional Navier-Stokes and Euler equations, Arch. Rational Mech. Anal. 128 (1994), no. 4, 329–358. | MR 1308857 | Zbl 0837.35110

[3] P. Biler, L. Corrias, and J. Dolbeault, Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis, J. Math. Biol. 63 (2011), no. 1, 1–32. | MR 2806487 | Zbl 1230.92011

[4] P. Biler, I. Guerra, and G. Karch, Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane, arXiv:1401.7650.

[5] A. Blanchet, J. Dolbeault, and B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations (2006), No. 44, 1–33. | MR 2226917 | Zbl 1112.35023

[6] H. Brezis, Remarks on the preceding paper by M. Ben-Artzi: “Global solutions of two-dimensional Navier-Stokes and Euler equations” [Arch. Rational Mech. Anal. 128 (1994), no. 4, 329–358; MR1308857 (96h:35148)], Arch. Rational Mech. Anal. 128 (1994), no. 4, 359–360. | MR 1308858 | Zbl 0837.35112

[7] V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in 2 , Commun. Math. Sci. 6 (2008), no. 2, 417–447. | MR 2433703 | Zbl 1149.35360

[8] J. Campos and J. Dolbeault, A functional framework for the Keller-Segel system: logarithmic Hardy-Littlewood-Sobolev and related spectral gap inequalities, C. R. Math. Acad. Sci. Paris 350 (2012), no. 21-22, 949–954. | MR 2996772 | Zbl 1257.35007

[9] J. F. Campos and J. Dolbeault, Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane, 2012.

[10] E. Carlen and M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on S n , Geom. Funct. Anal. 2 (1992), no. 1, 90–104. | MR 1143664 | Zbl 0754.47041

[11] K. Carrapatoso and S. Mischler, Uniqueness and long time asymptotic for the parabolic-parabolic Keller-Segel equation, arXiv:1406.6006.

[12] J. A. Carrillo, S. Lisini, and E. Mainini, Uniqueness for Keller-Segel-type chemotaxis models, Discrete Contin. Dyn. Syst. 34 (2014), no. 4, 1319–1338. | MR 3117843 | Zbl 1277.35009

[13] L. Corrias, M. Escobedo, and J. Matos, Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller-Segel system in the plane, J. Diff. Equations 257 (2014), no. 6, 1840–1878, . | Article | MR 3227285 | Zbl 1297.35033

[14] R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989), no. 3, 511–547. | MR 1022305 | Zbl 0696.34049

[15] G. Egaña and S. Mischler, Uniqueness and long time assymptotic for the Keller-Segel equation - Part I. The parabolic-elliptic case, arXiv:1310.7771.

[16] L. C. F. Ferreira and J. C. Precioso, Existence and asymptotic behaviour for the parabolic-parabolic Keller-Segel system with singular data, Nonlinearity 24 (2011), no. 5, 1433–1449. | MR 2785976 | Zbl 1221.35205

[17] N. Fournier, M. Hauray, and S. Mischler, Propagation of chaos for the 2d viscous vortex model, arXiv:1212.1437. | MR 3254330

[18] M. P. Gualdani, S. Mischler, and C. Mouhot, Factorization of non-symmetric operators and exponential H-Theorem, arXiv:1006.5523.

[19] M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), no. 4, 633–683 (1998). | Numdam | MR 1627338 | Zbl 0904.35037

[20] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970), 399–415. | Zbl 1170.92306

[21] S. Mischler and C. Mouhot, Exponential stability of slowly decaying solutions to the Kinetic-Fokker-Planck equation, arXiv:1412.7487.

[22] S. Mischler and C. Mouhot, Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres, Comm. Math. Phys. 288 (2009), no. 2, 431–502. | MR 2500990 | Zbl 1178.82056

[23] S. Mischler and J. Scher, Semigroup spectral analysis and growth-fragmentation equation, to appear in Ann. Inst. H. Poincaré - Anal. Non Linéaire (2015).

[24] T. Nagai, Global existence and blowup of solutions to a chemotaxis system, Proceedings of the Third World Congress of Nonlinear Analysts, Part 2 (Catania, 2000), vol. 47, 2001, pp. 777–787. | MR 1970697 | Zbl 1042.35574

[25] T. Nagai, T. Senba, and T. Suzuki, Chemotactic collapse in a parabolic system of mathematical biology, Hiroshima Math. J. 30 (2000), no. 3, 463–497. | MR 1799300 | Zbl 0984.35079

[26] Y. Naito, T. Suzuki, and K. Yoshida, Self-similar solutions to a parabolic system modeling chemotaxis, J. Differential Equations 184 (2002), no. 2, 386–421. | MR 1929883 | Zbl 1016.35037

[27] C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys. 15 (1953), 311–338. | MR 81586 | Zbl 1296.82044

[28] I. Tristani, Boltzmann equation for granular media with thermal force in a weakly inhomogeneous setting, arXiv:1311.5168.