The membership problem for polynomial ideals in terms of residue currents
[Le problème d’appartenance pour les idéaux de polynômes en termes de courants résidus]
Annales de l'Institut Fourier, Tome 56 (2006) no. 1, pp. 101-119.

On obtient un lien entre l’annulation d’un courant résidu défini globalement sur n et la solvabilité du problème d’appartenance pour les idéaux de polynômes où l’on contrôle les degrés des polynômes. Plusieurs théorèmes classiques se déduisent comme cas particuliers, comme par exemple le théorème de Max Noether, dont on obtient de plus une généralisation. On trouve également des liens avec des versions effectives du Nullstellensatz. On donne aussi des représentations intégrales explicites des solutions.

We find a relation between the vanishing of a globally defined residue current on n and solution of the membership problem with control of the polynomial degrees. Several classical results appear as special cases, such as Max Nöther’s theorem, for which we also obtain a generalization. Furthermore there are some connections to effective versions of the Nullstellensatz. We also provide explicit integral representations of the solutions.

DOI : 10.5802/aif.2174
Classification : 32B99, 32A27, 14E99
Keywords: membership problem, polynomial ideal, residue current, integral representation
Mot clés : problème d’appartenance, idéaux de polynômes, courant résidu, représentation intégrale
Andersson, Mats 1

1 Chalmers University of Technology and the University of Göteborg Department of Mathematics 412 96 Göteborg (Sweden)
@article{AIF_2006__56_1_101_0,
     author = {Andersson, Mats},
     title = {The membership problem for polynomial ideals in terms of residue currents},
     journal = {Annales de l'Institut Fourier},
     pages = {101--119},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {56},
     number = {1},
     year = {2006},
     doi = {10.5802/aif.2174},
     zbl = {1092.32002},
     mrnumber = {2228682},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2174/}
}
TY  - JOUR
AU  - Andersson, Mats
TI  - The membership problem for polynomial ideals in terms of residue currents
JO  - Annales de l'Institut Fourier
PY  - 2006
SP  - 101
EP  - 119
VL  - 56
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2174/
DO  - 10.5802/aif.2174
LA  - en
ID  - AIF_2006__56_1_101_0
ER  - 
%0 Journal Article
%A Andersson, Mats
%T The membership problem for polynomial ideals in terms of residue currents
%J Annales de l'Institut Fourier
%D 2006
%P 101-119
%V 56
%N 1
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.2174/
%R 10.5802/aif.2174
%G en
%F AIF_2006__56_1_101_0
Andersson, Mats. The membership problem for polynomial ideals in terms of residue currents. Annales de l'Institut Fourier, Tome 56 (2006) no. 1, pp. 101-119. doi : 10.5802/aif.2174. http://archive.numdam.org/articles/10.5802/aif.2174/

[1] Andersson, M. Integral representation with weights I, Math. Ann., Volume 326 (2003), pp. 1-18 | DOI | MR | Zbl

[2] Andersson, M. Ideals of smooth functions and residue currents, J. Funtional Anal., Volume 212 (2004), pp. 76-88 | DOI | MR | Zbl

[3] Andersson, M. Residue currents and ideals of holomorphic functions, Bull. Sci. Math., Volume 128 (2004), pp. 481-512 | DOI | MR | Zbl

[4] Berenstein, C.; Gay, R.; Vidras, A.; Yger, A. Residue Currents and Bézout Identities, Birkhäuser, 1993 | MR | Zbl

[5] Berenstein, C.; Taylor, B. A. Interpolation problems in n with applications to harmonic analysis, J. Analyse Math., Volume 38 (1980), pp. 188-254 | MR | Zbl

[6] Berenstein, C.; Yger, A. Effective Bézout Identities in 𝒬[z 1 ,...,z n ], Acta Mathematica, Volume 166 (1991), pp. 69-120 | DOI | MR | Zbl

[7] Berenstein, C.; Yger, A. Analytic residue theory in the non-complete intersection case, J. Reine Angew. Math., Volume 527 (2000), pp. 203-235 | DOI | MR | Zbl

[8] Berndtsson, B. A formula for division and interpolation, Math. Ann., Volume 263 (1983), pp. 113-160 | DOI | MR | Zbl

[9] Berndtsson, B. Integral formulas on projective space and the Radon transform of Gindikin-Henkin-Polyakov, Publ. Mat., Volume 32 (1988), pp. 7-41 | MR | Zbl

[10] Berndtsson, B.; Andersson, M. Henkin-Ramirez formulas with weights, Ann. Inst. Fourier, Volume 32 (1982), pp. 91-110 | DOI | Numdam | MR | Zbl

[11] Briançon, J.; Skoda, H. Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de n , C. R. Acad. Sci. Paris Sér. A, Volume 278 (1974), pp. 949-951 | MR | Zbl

[12] Brownawell, W. D. Bounds for the degrees in Nullstellensatz, Ann. of Math., Volume 126 (1987), pp. 577-592 | DOI | MR | Zbl

[13] Brownawell, W. D. A pure prime product version of the Hilbert Nullstellensatz, Mich. Math. J., Volume 45 (1998), pp. 581-597 | DOI | MR | Zbl

[14] Demailly, J-P Complex Analytic and Differential Geometry, monograph, Grenoble, 1997

[15] Dickenstein, A.; Sessa, C. Canonical representatives in moderate cohomology, Invent. Math., Volume 80 (1985), pp. 417-434 | DOI | MR | Zbl

[16] Ein, L.; Lazarsfeld, R. A geometric effective Nullstellensatz, Invent. math., Volume 135 (1999), pp. 427-448 | DOI | MR | Zbl

[17] Fabiano, A.; Ploski, A.; Tworzewski, P. Effective Nullstellensatz for strictly regular sequences, Univ. Iagel. Acta Math., Volume 38 (2000), pp. 163-167 | MR | Zbl

[18] Griffiths, P.; Harris, J. Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978 | MR | Zbl

[19] Hickel, M. Solution d’une conjecture de C. Berenstein-A. Yger et invariants de contact à l’infini, Ann. Inst. Fourier, Volume 51 (2001), pp. 707-744 | DOI | Numdam | MR | Zbl

[20] Jelonek, Z. On the effective Nullstellensatz (2004) (preprint) | Zbl

[21] Kollár, J. Sharp effective Nullstellensatz, J. American Math. Soc., Volume 1 (1988), pp. 963-975 | DOI | MR | Zbl

[22] Macaulay, F.S. The algebraic theory of modular systems, Cambridge Univ. Press, Cambridge, 1916 | MR | Zbl

[23] Nöther, M. Über einen Satz aus der Theorie der algebraischen Functionen, Math. Ann. (1873), pp. 351-359 | DOI | MR

[24] Passare, M. Residues, currents, and their relation to ideals of holomorphic functions, Math. Scand., Volume 62 (1988), pp. 75-152 | MR | Zbl

[25] Passare, M.; Tsikh, A.; Yger, A. Residue currents of the Bochner-Martinelli type, Publ. Mat., Volume 44 (2000), pp. 85-117 | MR | Zbl

[26] Shiffman, B. Degree bounds for the division problem in polynomial ideals, Michigan Math. J., Volume 36 (1989), pp. 163-171 | DOI | MR | Zbl

[27] Skoda, H. Application des techniques L 2 à la théorie des idéaux d’une algèbre de fonctions holomorphes avec poids, Ann. Sci. École Norm. Sup., Volume 5 (1972), pp. 545-579 | Numdam | MR | Zbl

[28] Teissier, B. Résultats récents d’algèbre commutative effective, Séminaire Bourbaki, Volume 1989/90 (1990) | Numdam | Zbl

[29] Tsikh, A. Multidimensional residues and their applications, Transl. Amer. Math. Soc., Volume 103 (1992) | MR | Zbl

[30] Tsikh, A.; Yger, A. Residue currents. Complex analysis, J. Math. Sci. (N. Y.), Volume 120 (2004), pp. 1916-1971 | DOI | MR | Zbl

[31] Vidras, A.; Yger, A. On some generalizations of Jacobi’s residue formula, Ann. Sci. École Norm. Sup., Volume 34 (2001), pp. 131-157 | Numdam | MR | Zbl

Cité par Sources :