A generalization of metric tensor and its application
Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Volume 13 (1970) no. 4, pp. 287-293.
@article{AIHPA_1970__13_4_287_0,
     author = {Perng, Jeng J.},
     title = {A generalization of metric tensor and its application},
     journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique},
     pages = {287--293},
     publisher = {Gauthier-Villars},
     volume = {13},
     number = {4},
     year = {1970},
     mrnumber = {275838},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1970__13_4_287_0/}
}
TY  - JOUR
AU  - Perng, Jeng J.
TI  - A generalization of metric tensor and its application
JO  - Annales de l'institut Henri Poincaré. Section A, Physique Théorique
PY  - 1970
SP  - 287
EP  - 293
VL  - 13
IS  - 4
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1970__13_4_287_0/
LA  - en
ID  - AIHPA_1970__13_4_287_0
ER  - 
%0 Journal Article
%A Perng, Jeng J.
%T A generalization of metric tensor and its application
%J Annales de l'institut Henri Poincaré. Section A, Physique Théorique
%D 1970
%P 287-293
%V 13
%N 4
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1970__13_4_287_0/
%G en
%F AIHPA_1970__13_4_287_0
Perng, Jeng J. A generalization of metric tensor and its application. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Volume 13 (1970) no. 4, pp. 287-293. http://archive.numdam.org/item/AIHPA_1970__13_4_287_0/

[1] A. Einstein and E.G. Straus, Ann. Math. (Princeton), t. 47 (2), 1946, p. 731. | MR | Zbl

[2] A. Einstein and B. Kaufman, Ann. Math. (Princeton), t. 62, 1955, p. 128. | MR | Zbl

[3] A. Einstein, The meaning of Relativity, 5th ed., Princeton, 1955, Appendix II. | MR | Zbl

[4] O. Klein, Proceedings of the Berne Congress, 1955.

[5] H. Weyl, Proceedings of the Berne Congress, 1955.

[6] M. Fierz, Helv. Phys. Acta, t. 29, 1956, p. 128. | MR | Zbl

[7] P.G. Bergmann, Introduction to the Theory of Relativity, 1942, p. 245-279. | JFM | MR

[8] W. Pauli, Theory of Relativity, 1958, p. 172-173, p. 223-232. | MR | Zbl

[9] L.P. Eisenhart, Non-Riemannian Geometry, 1927, p. 55-56. | JFM