Centro-affine normal flows on curves: Harnack estimates and ancient solutions
Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 6, p. 1189-1197
The full text of recent articles is available to journal subscribers only. See the article on the journal's website

We prove that the only compact, origin-symmetric, strictly convex ancient solutions of the planar p centro-affine normal flows are contracting origin-centered ellipses.

DOI : https://doi.org/10.1016/j.anihpc.2014.07.001
Classification:  53C44,  53A04,  52A10,  53A15
Keywords: Centro-affine normal flow, Affine differential geometry, Affine support function, Ancient solutions
@article{AIHPC_2015__32_6_1189_0,
     author = {Ivaki, Mohammad N.},
     title = {Centro-affine normal flows on curves: Harnack estimates and ancient solutions},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {32},
     number = {6},
     year = {2015},
     pages = {1189-1197},
     doi = {10.1016/j.anihpc.2014.07.001},
     zbl = {1329.53096},
     mrnumber = {3425259},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2015__32_6_1189_0}
}
Ivaki, Mohammad N. Centro-affine normal flows on curves: Harnack estimates and ancient solutions. Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 6, pp. 1189-1197. doi : 10.1016/j.anihpc.2014.07.001. http://www.numdam.org/item/AIHPC_2015__32_6_1189_0/

[1] B. Andrews, Harnack inequalities for evolving hypersurfaces, Math. Z. 217 (1994), 179 -197 | MR 1296393 | Zbl 0807.53044

[2] B. Andrews, Contraction of convex hypersurfaces by their affine normal, J. Differ. Geom. 43 (1996), 207 -230 | MR 1424425 | Zbl 0858.53005

[3] B. Andrews, Affine curve-lengthening flow, J. Reine Angew. Math. 506 (1999), 43 -83 | MR 1665677 | Zbl 0948.53039

[4] B. Andrews, Motion of hypersurfaces by Gauss curvature, Pac. J. Math. 195 no. 1 (2000), 1 -34 | MR 1781612 | Zbl 1028.53072

[5] S. Chen, Classifying convex compact ancient solutions to the affine curve shortening flow, J. Geom. Anal. (2013), http://dx.doi.org/10.1007/s12220-013-9456-z | MR 3319961

[6] C.M. Petty, Affine isoperimetric problems, Discrete Geometry and Convexity Ann. N.Y. Acad. Sci. 440 (1985), 113 -127 , http://dx.doi.org/10.1111/j.1749-6632.1985.tb14545.x | MR 809198 | Zbl 0576.52003

[7] M.N. Ivaki, Centro-affine curvature flows on centrally symmetric convex curves, Trans. Am. Math. Soc. (2014), arXiv:1205.6456v2 | MR 3256179 | Zbl 1298.53062

[8] M.N. Ivaki, A. Stancu, Volume preserving centro-affine normal flows, Commun. Anal. Geom. 21 (2013), 671 -685 | MR 3078952 | Zbl 1282.53011

[9] J. Loftin, M.P. Tsui, Ancient solutions of the affine normal flow, J. Differ. Geom. 78 (2008), 113 -162 | MR 2406266 | Zbl 1146.53038

[10] E. Lutwak, The Brunn–Minkowski–Fiery theory II: affine and geominimal surface areas, Adv. Math. 118 (1996), 244 -294 | MR 1378681 | Zbl 0853.52005

[11] G. Sapiro, A. Tannenbaum, On affine plane curve evolution, J. Funct. Anal. 119 (1994), 79 -120 | MR 1255274 | Zbl 0801.53008

[12] A. Stancu, Centro-affine invariants for smooth convex bodies, Int. Math. Res. Not. 2012 no. 10 (2012), 2289 -2320 | MR 2923167 | Zbl 1250.52009