Generic robustness of spectral decompositions
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 36 (2003) no. 2, pp. 213-224.
@article{ASENS_2003_4_36_2_213_0,
     author = {Abdenur, Flavio},
     title = {Generic robustness of spectral decompositions},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {213--224},
     publisher = {Elsevier},
     volume = {Ser. 4, 36},
     number = {2},
     year = {2003},
     doi = {10.1016/S0012-9593(03)00008-9},
     mrnumber = {1980311},
     zbl = {1027.37010},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/S0012-9593(03)00008-9/}
}
TY  - JOUR
AU  - Abdenur, Flavio
TI  - Generic robustness of spectral decompositions
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2003
SP  - 213
EP  - 224
VL  - 36
IS  - 2
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/S0012-9593(03)00008-9/
DO  - 10.1016/S0012-9593(03)00008-9
LA  - en
ID  - ASENS_2003_4_36_2_213_0
ER  - 
%0 Journal Article
%A Abdenur, Flavio
%T Generic robustness of spectral decompositions
%J Annales scientifiques de l'École Normale Supérieure
%D 2003
%P 213-224
%V 36
%N 2
%I Elsevier
%U https://www.numdam.org/articles/10.1016/S0012-9593(03)00008-9/
%R 10.1016/S0012-9593(03)00008-9
%G en
%F ASENS_2003_4_36_2_213_0
Abdenur, Flavio. Generic robustness of spectral decompositions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 36 (2003) no. 2, pp. 213-224. doi : 10.1016/S0012-9593(03)00008-9. https://www.numdam.org/articles/10.1016/S0012-9593(03)00008-9/

[1] Abdenur F., Attractors of generic diffeomorphisms are persistent, preprint IMPA, 2001. | MR

[2] Bonatti Ch., Diaz L.J., Persistence of transitive diffeomorphisms, Ann. Math. 143 (1995) 367-396. | MR | Zbl

[3] Bonatti Ch., Diaz L.J., Connexions hétéroclines et généricité d'une infinité de puits ou de sources, Ann. Scient. Éc. Norm. Sup. Paris 32 (1999) 135-150. | Numdam | MR | Zbl

[4] Bonatti Ch., Diaz L.J., On maximal transitive sets of generic diffeomorphisms, preprint PUC-Rio, 2001.

[5] Bonatti Ch., Diaz L.J., Pujals E., A C1-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. Math., to appear. | MR | Zbl

[6] Bonatti Ch., Diaz L.J., Pujals E., Rocha J., Robustly transitive sets and heterodimensional cycles, Astérisque, to appear. | Numdam | MR | Zbl

[7] Bonatti Ch., Viana M., SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math. 115 (2000) 157-193. | MR | Zbl

[8] Carballo C.M., Morales C.A., Homoclinic classes and finitude of attractors for vector fields on n-manifolds, preprint, 2001. | MR

[9] Carballo C.M., Morales C.A., Pacifico M.J., Homoclinic classes for generic C1 vector fields, Ergodic Theory Dynam. Systems, to appear. | MR | Zbl

[10] Diaz L.J., Pujals E., Ures R., Partial hyperbolicity and robust transitivity, Acta Math. 183 (1999) 1-43. | MR | Zbl

[11] Franks J., Necessary conditions for stability of diffeomorphisms, Trans. AMS 158 (1971) 301-308. | MR | Zbl

[12] Hayashi S., Diffeomorphisms in I1(M) satisfy Axiom A, Ergodic Theory Dynam. Systems 12 (1992) 233-253. | MR | Zbl

[13] Hayashi S., Connecting invariant manifolds and the solution of the C1 stability and Ω-stability conjectures for flows, Ann. Math. 145 (1997) 81-137. | Zbl

[14] Kelley J.L., General Topology, New York, Springer, 1955. | MR | Zbl

[15] Mañé R., Contributions to the C1-stability conjecture, Topology 17 (1978) 386-396. | MR | Zbl

[16] Mañé R., An ergodic closing lemma, Ann. Math. 116 (1982) 503-540. | MR | Zbl

[17] Palis J., A global view of dynamics and a conjecture on the denseness of finitude of atttractors, Astérisque 261 (2000) 335-347. | Numdam | MR | Zbl

[18] Pugh C., An improved closing lemma and a general density theorem, Amer. J. Math. 89 (1967) 1010-1021. | MR | Zbl

[19] Pujals E., Sambarino M., Homoclinic tangencies and hyperbolicity for surface diffeomorphisms: a conjecture of Palis, Ann. Math. 151 (2000) 961-1023. | MR | Zbl

[20] Palis J., Takens F., Hyperbolicity and Sensitive-Chaotic Dynamics at Homoclinic Bifurcations, Cambridge Univ. Press, 1993. | MR | Zbl

[21] Shub M., Global Stability of Dynamical Systems, Springer-Verlag, New York, 1986. | MR | Zbl

  • BONATTI, CHRISTIAN; SHINOHARA, KATSUTOSHI Volume hyperbolicity and wildness, Ergodic Theory and Dynamical Systems, Volume 38 (2018) no. 3, p. 886 | DOI:10.1017/etds.2016.51
  • Arbieto, A.; Morales, C. A.; Santiago, B. On Araujo’s Theorem for Flows, Journal of Dynamical and Control Systems, Volume 22 (2016) no. 1, p. 55 | DOI:10.1007/s10883-014-9250-7
  • Bahabadi, Alireza Zamani Average Shadowing Property With Non Uniformly Hyperbolicity on Periodic Points, Journal of Dynamical Systems and Geometric Theories, Volume 12 (2014) no. 1, p. 11 | DOI:10.1080/1726037x.2014.917826
  • Arbieto, A.; Carvalho, B.; Cordeiro, W.; Obata, D. J. On bi-Lyapunov stable homoclinic classes, Bulletin of the Brazilian Mathematical Society, New Series, Volume 44 (2013) no. 1, p. 105 | DOI:10.1007/s00574-013-0005-y
  • BONATTI, CH.; CROVISIER, S.; DÍAZ, L. J.; GOURMELON, N. Internal perturbations of homoclinic classes: non-domination, cycles, and self-replication, Ergodic Theory and Dynamical Systems, Volume 33 (2013) no. 3, p. 739 | DOI:10.1017/s0143385712000028
  • ARBIETO, ALEXANDER; CATALAN, THIAGO Hyperbolicity in the volume-preserving scenario, Ergodic Theory and Dynamical Systems, Volume 33 (2013) no. 6, p. 1644 | DOI:10.1017/etds.2012.111
  • Arbieto, A.; Armijo, A.; Catalan, T.; Senos, L. Symbolic extensions and dominated splittings for generic C1 C 1 -diffeomorphisms, Mathematische Zeitschrift, Volume 275 (2013) no. 3-4, p. 1239 | DOI:10.1007/s00209-013-1180-7
  • Das, Tarun; Lee, Keonhee; Lee, Manseob C1-persistently continuum-wise expansive homoclinic classes and recurrent sets, Topology and its Applications, Volume 160 (2013) no. 2, p. 350 | DOI:10.1016/j.topol.2012.11.013
  • Anosov, D. V.; Zhuzhoma, E. V. Closing lemmas, Differential Equations, Volume 48 (2012) no. 13, p. 1653 | DOI:10.1134/s0012266112130010
  • Bonatti, Ch.; Díaz, L.J. Fragile cycles, Journal of Differential Equations, Volume 252 (2012) no. 7, p. 4176 | DOI:10.1016/j.jde.2011.12.002
  • Ahn, Jiweon; Lee, Keonhee; Lee, Manseob Homoclinic classes with shadowing, Journal of Inequalities and Applications, Volume 2012 (2012) no. 1 | DOI:10.1186/1029-242x-2012-97
  • Bonatti, C; Díaz, L J; Kiriki, S Stabilization of heterodimensional cycles, Nonlinearity, Volume 25 (2012) no. 4, p. 931 | DOI:10.1088/0951-7715/25/4/931
  • BONATTI, C. SURVEY Towards a global view of dynamical systems, for the C1-topology, Ergodic Theory and Dynamical Systems, Volume 31 (2011) no. 4, p. 959 | DOI:10.1017/s0143385710000891
  • Abdenur, Flavio; Bonatti, Christian; Crovisier, Sylvain Nonuniform hyperbolicity for C 1-generic diffeomorphisms, Israel Journal of Mathematics, Volume 183 (2011) no. 1, p. 1 | DOI:10.1007/s11856-011-0041-5
  • Yang, Dawei Stably weakly shadowing transitive sets and dominated splittings, Proceedings of the American Mathematical Society, Volume 139 (2011) no. 8, p. 2747 | DOI:10.1090/s0002-9939-2011-10699-3
  • Crovisier, Sylvain Birth of homoclinic intersections: a model for the central dynamics of partially hyperbolic systems, Annals of Mathematics, Volume 172 (2010) no. 3, p. 1641 | DOI:10.4007/annals.2010.172.1641
  • Pacifico, M J; Vieitez, J L Robust entropy expansiveness implies generic domination, Nonlinearity, Volume 23 (2010) no. 8, p. 1971 | DOI:10.1088/0951-7715/23/8/009
  • Pujals, Enrique R. Trying to Characterize Robust and Generic Dynamics, New Trends in Mathematical Physics (2009), p. 549 | DOI:10.1007/978-90-481-2810-5_37
  • SAKAI, KAZUHIRO C1-stably shadowable chain components, Ergodic Theory and Dynamical Systems, Volume 28 (2008) no. 3, p. 987 | DOI:10.1017/s0143385707000570
  • Bonatti, C. Generic Properties of Dynamical Systems, Encyclopedia of Mathematical Physics (2006), p. 494 | DOI:10.1016/b0-12-512666-2/00164-4
  • Abdenur, Flavio; Bonatti, Christian; Díaz, Lorenzo J Non-wandering sets with non-empty interiors, Nonlinearity, Volume 17 (2004) no. 1, p. 175 | DOI:10.1088/0951-7715/17/1/011
  • Díaz, Lorenzo J; Santoro, Bianca Collision, explosion and collapse of homoclinic classes, Nonlinearity, Volume 17 (2004) no. 3, p. 1001 | DOI:10.1088/0951-7715/17/3/013

Cité par 22 documents. Sources : Crossref