The aim of this article is to present “refined” Hardy-type inequalities. Those inequalities are generalisations of the usual Hardy inequalities, their additional feature being that they are invariant under oscillations: when applied to highly oscillatory functions, both sides of the refined inequality are of the same order of magnitude. The proof relies on paradifferential calculus and Besov spaces. It is also adapted to the case of the Heisenberg group.
@article{ASNSP_2006_5_5_3_375_0, author = {Bahouri, Hajer and Chemin, Jean-Yves and Gallagher, Isabelle}, title = {Refined {Hardy} inequalities}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {375--391}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 5}, number = {3}, year = {2006}, zbl = {1121.43006}, mrnumber = {2274784}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_2006_5_5_3_375_0/} }
TY - JOUR AU - Bahouri, Hajer AU - Chemin, Jean-Yves AU - Gallagher, Isabelle TI - Refined Hardy inequalities JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2006 DA - 2006/// SP - 375 EP - 391 VL - Ser. 5, 5 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://archive.numdam.org/item/ASNSP_2006_5_5_3_375_0/ UR - https://zbmath.org/?q=an%3A1121.43006 UR - https://www.ams.org/mathscinet-getitem?mr=2274784 LA - en ID - ASNSP_2006_5_5_3_375_0 ER -
Bahouri, Hajer; Chemin, Jean-Yves; Gallagher, Isabelle. Refined Hardy inequalities. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 5 (2006) no. 3, pp. 375-391. http://archive.numdam.org/item/ASNSP_2006_5_5_3_375_0/
[1] Trace and trace lifting theorems in weighted Sobolev spaces, J. Inst. Math. Jussieu 4 (2005), 509-552. | MR 2171730 | Zbl 1089.35016
, and ,[2] Espaces de Besov et estimations de Strichartz généralisées sur le groupe de Heisenberg, J. Anal. Math. 82 (2000), 93-118. | MR 1799659 | Zbl 0965.22010
, and ,[3] Paraproduit sur le groupe de Heisenberg et applications, Rev. Mat. Iberoamericana 17 (2001), 69-105. | MR 1846091 | Zbl 0971.43002
and ,[4] Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. 14 (1981), 209-246. | Numdam | MR 631751 | Zbl 0495.35024
,[5] Calcul de Weyl-Hörmander et opérateurs sous-elliptiques, Ann. Inst. Fourier (Grenoble) 43 (1993), 1157-1178. | Numdam | MR 1252940 | Zbl 0797.35008
, and ,[6] “Fluides Parfaits Incompressibles”, Astérisque, Vol. 230, 1995. | MR 1340046 | Zbl 0829.76003
,[7] Inclusions de Sobolev en calcul de Weyl-Hörmander et champs de vecteurs sous-elliptiques, Ann. Sci. École Norm. Sup. 30 (1997), 719-751. | Numdam | MR 1476294 | Zbl 0892.35161
and ,[8] MR 898880 | Zbl 0622.43001
and) K. Harzallah, “Deux Cours d'Analyse Harmonique”, École d'Été d'analyse harmonique de Tunis, 1984. Progress in Mathematics, Birkhuser. |[9] Fourier analysis on the Heisenberg groups, Proc. Natl. Acad. Sciences U.S.A, 74 (1977), 1328-1331. | MR 486312 | Zbl 0351.43012
,[10] Inégalités de Sobolev précisées, Séminaire EDP, École Polytechnique, France, Décembre 1996. | Numdam | MR 1482810 | Zbl 1066.46501
, and ,[11] Note on a theorem of Hilbert, Math. Zeit., 6 (1920), 314-317. | EuDML 167578 | JFM 47.0207.01 | MR 1544414
,[12] An inequality between integrals, Messenger of Maths. 54 (1925), 150-156. | JFM 51.0192.01
,[13] The Poincaré inequality for vector fields satisfying Hörmander's conditions, Duke Math. J., 53 (1986), 503-523. | MR 850547 | Zbl 0614.35066
,[14] The Dirichlet problem for the Kohn Laplacian on the Heisenberg group, I, J. Funct. Anal. 43 (1981), 97-142. | MR 639800 | Zbl 0493.58021
,[15] The Dirichlet problem for the Kohn Laplacian on the Heisenberg group, II, J. Funct. Anal. 43 (1981), 224-257. | MR 633978 | Zbl 0493.58022
,[16] The Wave Equation on the Heisenberg Group, Comm. Partial Differential Equations 7 (1982), 675-714. | MR 660749 | Zbl 0524.35065
,[17] Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247-320. | MR 436223 | Zbl 0346.35030
and ,[18] “Harmonic Analysis”, Princeton University Press, 1993. | MR 1232192 | Zbl 0821.42001
,[19] “Noncommutative Harmonic Analysis”, Mathematical Surveys and Monographs, Vol. 22, AMS, Providence, Rhode Island, 1986. | MR 852988 | Zbl 0604.43001
,