Refined Hardy inequalities
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 5 (2006) no. 3, p. 375-391

The aim of this article is to present “refined” Hardy-type inequalities. Those inequalities are generalisations of the usual Hardy inequalities, their additional feature being that they are invariant under oscillations: when applied to highly oscillatory functions, both sides of the refined inequality are of the same order of magnitude. The proof relies on paradifferential calculus and Besov spaces. It is also adapted to the case of the Heisenberg group.

Classification:  43A80,  42B99
@article{ASNSP_2006_5_5_3_375_0,
     author = {Bahouri, Hajer and Chemin, Jean-Yves and Gallagher, Isabelle},
     title = {Refined Hardy inequalities},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 5},
     number = {3},
     year = {2006},
     pages = {375-391},
     zbl = {1121.43006},
     mrnumber = {2274784},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2006_5_5_3_375_0}
}
Bahouri, Hajer; Chemin, Jean-Yves; Gallagher, Isabelle. Refined Hardy inequalities. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 5 (2006) no. 3, pp. 375-391. http://www.numdam.org/item/ASNSP_2006_5_5_3_375_0/

[1] H. Bahouri, J.-Y. Chemin and C.-J. Xu, Trace and trace lifting theorems in weighted Sobolev spaces, J. Inst. Math. Jussieu 4 (2005), 509-552. | MR 2171730 | Zbl 1089.35016

[2] H. Bahouri, P. Gérard and C.-J. Xu, Espaces de Besov et estimations de Strichartz généralisées sur le groupe de Heisenberg, J. Anal. Math. 82 (2000), 93-118. | MR 1799659 | Zbl 0965.22010

[3] H. Bahouri and I. Gallagher, Paraproduit sur le groupe de Heisenberg et applications, Rev. Mat. Iberoamericana 17 (2001), 69-105. | MR 1846091 | Zbl 0971.43002

[4] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. 14 (1981), 209-246. | Numdam | MR 631751 | Zbl 0495.35024

[5] C. E. Cancelier, J.-Y. Chemin and C.-J. Xu, Calcul de Weyl-Hörmander et opérateurs sous-elliptiques, Ann. Inst. Fourier (Grenoble) 43 (1993), 1157-1178. | Numdam | MR 1252940 | Zbl 0797.35008

[6] J.-Y. Chemin, “Fluides Parfaits Incompressibles”, Astérisque, Vol. 230, 1995. | MR 1340046 | Zbl 0829.76003

[7] J.-Y. Chemin and C.-J. Xu, Inclusions de Sobolev en calcul de Weyl-Hörmander et champs de vecteurs sous-elliptiques, Ann. Sci. École Norm. Sup. 30 (1997), 719-751. | Numdam | MR 1476294 | Zbl 0892.35161

[8] J. Faraut and) K. Harzallah, “Deux Cours d'Analyse Harmonique”, École d'Été d'analyse harmonique de Tunis, 1984. Progress in Mathematics, Birkha ¨user. | MR 898880 | Zbl 0622.43001

[9] D. Geller, Fourier analysis on the Heisenberg groups, Proc. Natl. Acad. Sciences U.S.A, 74 (1977), 1328-1331. | MR 486312 | Zbl 0351.43012

[10] P. Gérard, Y. Meyer and F. Oru, Inégalités de Sobolev précisées, Séminaire EDP, École Polytechnique, France, Décembre 1996. | Numdam | MR 1482810 | Zbl 1066.46501

[11] G. H. Hardy, Note on a theorem of Hilbert, Math. Zeit., 6 (1920), 314-317. | JFM 47.0207.01 | MR 1544414

[12] G. H. Hardy, An inequality between integrals, Messenger of Maths. 54 (1925), 150-156. | JFM 51.0192.01

[13] D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander's conditions, Duke Math. J., 53 (1986), 503-523. | MR 850547 | Zbl 0614.35066

[14] D. Jerison, The Dirichlet problem for the Kohn Laplacian on the Heisenberg group, I, J. Funct. Anal. 43 (1981), 97-142. | MR 639800 | Zbl 0493.58021

[15] D. Jerison, The Dirichlet problem for the Kohn Laplacian on the Heisenberg group, II, J. Funct. Anal. 43 (1981), 224-257. | MR 633978 | Zbl 0493.58022

[16] A. I. Nachman, The Wave Equation on the Heisenberg Group, Comm. Partial Differential Equations 7 (1982), 675-714. | MR 660749 | Zbl 0524.35065

[17] L. Rothschild and E. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247-320. | MR 436223 | Zbl 0346.35030

[18] E.M. Stein, “Harmonic Analysis”, Princeton University Press, 1993. | MR 1232192 | Zbl 0821.42001

[19] M. E. Taylor, “Noncommutative Harmonic Analysis”, Mathematical Surveys and Monographs, Vol. 22, AMS, Providence, Rhode Island, 1986. | MR 852988 | Zbl 0604.43001