A priori estimates for weak solutions of complex Monge-Ampère equations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 7 (2008) no. 1, p. 81-96

Let X be a compact Kähler manifold and ω be a smooth closed form of bidegree (1,1) which is nonnegative and big. We study the classes χ (X,ω) of ω-plurisubharmonic functions of finite weighted Monge-Ampère energy. When the weight χ has fast growth at infinity, the corresponding functions are close to be bounded. We show that if a positive Radon measure is suitably dominated by the Monge-Ampère capacity, then it belongs to the range of the Monge-Ampère operator on some class χ (X,ω). This is done by establishing a priori estimates on the capacity of sublevel sets of the solutions. Our result extends those of U. Cegrell’s and S. Kolodziej’s and puts them into a unifying frame. It also gives a simple proof of S. T. Yau’s celebrated a priori 𝒞 0 -estimate.

Classification:  32W20,  32Q25,  32U05
@article{ASNSP_2008_5_7_1_81_0,
     author = {Benelkourchi, Slimane and Guedj, Vincent and Zeriahi, Ahmed},
     title = {A priori estimates for weak solutions of complex Monge-Amp\`ere equations},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 7},
     number = {1},
     year = {2008},
     pages = {81-96},
     zbl = {1150.32011},
     mrnumber = {2413673},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2008_5_7_1_81_0}
}
Benelkourchi, Slimane; Guedj, Vincent; Zeriahi, Ahmed. A priori estimates for weak solutions of complex Monge-Ampère equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 7 (2008) no. 1, pp. 81-96. http://www.numdam.org/item/ASNSP_2008_5_7_1_81_0/

[1] H. Alexander and B. A. Taylor, Comparison of two capacities in n , Math. Z. 186 (1984), 407-417. | MR 744831 | Zbl 0576.32029

[2] T. Aubin, Équations du type Monge-Ampère sur les variétés Kählériennes compactes, Bull. Sci. Math. (2) 102 (1978), 63-95. | MR 494932 | Zbl 0374.53022

[3] E. Bedford and B. A. Taylor A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40. | MR 674165 | Zbl 0547.32012

[4] Z. Blocki, On uniform estimate in Calabi-Yau theorem, Sci. China Ser. A 48 (2005) , suppl., 244-247. | MR 2156505 | Zbl 1128.32025

[5] G. Burgos, J. Kramer and U. Kuhn, Arithmetic characteristic classes of automorphic vector bundles, Doc. Math. 10 (2005), 619-716. | MR 2218402 | Zbl 1080.14028

[6] E. Calabi, On Kähler manifolds with vanishing canonical class. Algebraic geometry and topology, In: “A symposium in Honor of S. Lefschetz”, Princeton Univ. Press, Princeton, N. J. (1957), 78-89. | MR 85583 | Zbl 0080.15002

[7] U. Cegrell, Pluricomplex energy, Acta Math. 180 (1998), 187-217. | MR 1638768 | Zbl 0926.32042

[8] P. Eyssidieux, V. Guedj and A. Zeriahi, Singular Kähler-Einstein metrics, preprint arxiv math. AG/0603431. | MR 2505296 | Zbl 1215.32017

[9] V. Guedj and A. Zeriahi, Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (2005), 607-639. | MR 2203165 | Zbl 1087.32020

[10] V. Guedj and A. Zeriahi, The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007), 442-482. | MR 2352488 | Zbl 1143.32022

[11] S. Kolodziej, The range of the complex Monge-Ampère operator, Indiana Univ. Math. J. 43 (1994), 1321-1338. | MR 1322621 | Zbl 0831.31009

[12] S. Kolodziej, The complex Monge-Ampère equation, Acta Math. 180 (1998), 69-117. | MR 1618325 | Zbl 0913.35043

[13] S. Kolodziej, The Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52 (2003), 667-686. | MR 1986892 | Zbl 1039.32050

[14] S. Kolodziej, “The Complex Monge-Ampère Equation and Pluripotential Theory”, Mem. Amer. Math. Soc., Vol. 178, 2005. | MR 2172891 | Zbl 1084.32027

[15] U. Kuhn, Generalized arithmetic intersection numbers, J. Reine Angew. Math. 534 (2001), 209-236. | MR 1831639 | Zbl 1084.14028

[16] J. Rainwater, A note on the preceding paper, Duke Math. J. 36 (1969), 799-800. | MR 290114 | Zbl 0201.45801

[17] T. Ransford, “Potential Theory in the Complex Plane”, London Mathematical Society Student Texts, Vol. 28, Cambridge University Press, Cambridge, 1995. | MR 1334766 | Zbl 0828.31001

[18] G. Tian, “Canonical Metrics in Kähler Geometry”, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2000. | MR 1787650 | Zbl 0978.53002

[19] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Comm. Pure Appl. Math. 31 (1978), 339-411. | MR 480350 | Zbl 0369.53059

[20] A. Zeriahi, Volume and capacity of sublevel sets of a Lelong class of psh functions, Indiana Univ. Math. J. 50 (2001), 671-703. | MR 1857051 | Zbl 1138.31302