On the local structure of a generic central set
Compositio Mathematica, Volume 43 (1981) no. 2, p. 225-238
@article{CM_1981__43_2_225_0,
     author = {Yomdin, Yosef},
     title = {On the local structure of a generic central set},
     journal = {Compositio Mathematica},
     publisher = {Sijthoff et Noordhoff International Publishers},
     volume = {43},
     number = {2},
     year = {1981},
     pages = {225-238},
     zbl = {0465.58008},
     mrnumber = {622449},
     language = {en},
     url = {http://www.numdam.org/item/CM_1981__43_2_225_0}
}
Yomdin, Yosef. On the local structure of a generic central set. Compositio Mathematica, Volume 43 (1981) no. 2, pp. 225-238. http://www.numdam.org/item/CM_1981__43_2_225_0/

[1] Th. Bröcker and L. Lander: Differentiable germs and catastrophes. London Math. Society Lect. Notes series, 17. Cambridge University Press, 1975. | MR 494220 | Zbl 0302.58006

[2] M. Buchner: Stability of the cut locus in dimensions less than or equal to six. Inventiones Math., 43 (1977) 199-231. | MR 482816 | Zbl 0365.58010

[3] M. Buchner: The structure of the cut locus in dimension less than or equal to six. Compositio Math., 37, 1 (1978) 103-119. | Numdam | MR 501100 | Zbl 0407.58008

[4] F.H. Clarke: Generalized gradients and applications. Trans. Amer. Math. Soc., 205 (1975) 247-262. | MR 367131 | Zbl 0307.26012

[5] F.H. Clarke: On the inverse function theorem. Pacific J. Math., 64 (1976) 97-102. | MR 425047 | Zbl 0331.26013

[6] R.O. Duda and P.E. Hart: Pattern Classification and Scene Analysis. Wiley, 1973. | Zbl 0277.68056

[7] E.J.N. Looijenga: Structural stability of smooth families of C∞-functions. Doctoral thesis, Universiteit van Amsterdam, 1974.

[8] D. Milman: Eine geometrische Ungleihung und ihre Anvendung (Die zentrale Menge des Gebites und die Erkennung des Gebites durch sie). In "General Inequalities ", v. 2., edited by E.F. Beckenbach (to appear). | MR 608260 | Zbl 0432.53001

[9] D. Milman and Z. Waksman: On topological properties of the central set of a bounded domain in Rm (to appear). | Zbl 0454.57004

[10] D. Milman: The central function of the boundary of a domain and its differentiable properties (to appear). | MR 593216 | Zbl 0448.53006

[11] R. Thom: Sur le cut-locus d'une varieté plongée. J. Diff. Geom., 6 (1972) 577-586. | MR 391131 | Zbl 0248.57010

[12] C.T.C. Wall: Geometric properties of generic differentiable manifolds: in "Geometry and Topology", Proceeding of the III Latin American School of Mathematics, Rio de Janero, 1976, Lecture Notes in Math., 597, 707-774. | MR 494233 | Zbl 0361.58004