Control of underwater vehicles in inviscid fluids
ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 3, pp. 662-703.

In this paper, we investigate the controllability of an underwater vehicle immersed in an infinite volume of an inviscid fluid whose flow is assumed to be irrotational. Taking as control input the flow of the fluid through a part of the boundary of the rigid body, we obtain a finite-dimensional system similar to Kirchhoff laws in which the control input appears through both linear terms (with time derivative) and bilinear terms. Applying Coron's return method, we establish some local controllability results for the position and velocities of the underwater vehicle. Examples with six, four, or only three controls inputs are given for a vehicle with an ellipsoidal shape.

DOI : 10.1051/cocv/2013079
Classification : 35Q35, 76B03, 76B99
Mots-clés : underactuated underwater vehicle, submarine, controllability, Euler equations, return method, quaternion
@article{COCV_2014__20_3_662_0,
     author = {Lecaros, Rodrigo and Rosier, Lionel},
     title = {Control of underwater vehicles in inviscid fluids},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {662--703},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {3},
     year = {2014},
     doi = {10.1051/cocv/2013079},
     mrnumber = {3264219},
     zbl = {1301.35098},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2013079/}
}
TY  - JOUR
AU  - Lecaros, Rodrigo
AU  - Rosier, Lionel
TI  - Control of underwater vehicles in inviscid fluids
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2014
SP  - 662
EP  - 703
VL  - 20
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2013079/
DO  - 10.1051/cocv/2013079
LA  - en
ID  - COCV_2014__20_3_662_0
ER  - 
%0 Journal Article
%A Lecaros, Rodrigo
%A Rosier, Lionel
%T Control of underwater vehicles in inviscid fluids
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2014
%P 662-703
%V 20
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2013079/
%R 10.1051/cocv/2013079
%G en
%F COCV_2014__20_3_662_0
Lecaros, Rodrigo; Rosier, Lionel. Control of underwater vehicles in inviscid fluids. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 3, pp. 662-703. doi : 10.1051/cocv/2013079. http://archive.numdam.org/articles/10.1051/cocv/2013079/

[1] S.L. Altmann, Rotations, quaternions, and double groups. Oxford Science Publications. The Clarendon Press Oxford University Press, New York (1986). | MR | Zbl

[2] A. Astolfi, D. Chhabra and R. Ortega, Asymptotic stabilization of some equilibria of an underactuated underwater vehicle. Systems Control Lett. 45 (2002) 193-206. | MR | Zbl

[3] A.M. Bloch, P.S. Krishnaprasad, J.E. Marsden and G. Sánchez De Alvarez, Stabilization of rigid body dynamics by internal and external torques. Automatica J. IFAC 28 (1992) 745-756. | MR | Zbl

[4] T. Chambrion and M. Sigalotti, Tracking control for an ellipsoidal submarine driven by Kirchhoff's laws. IEEE Trans. Automat. Control 53 (2008) 339-349. | MR

[5] C. Conca, P. Cumsille, J. Ortega and L. Rosier, On the detection of a moving obstacle in an ideal fluid by a boundary measurement. Inverse Problems 24 (2008) 045001, 18. | MR | Zbl

[6] C. Conca, M. Malik and A. Munnier, Detection of a moving rigid body in a perfect fluid. Inverse Problems 26 (2010) 095010. | MR | Zbl

[7] J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155-188. | MR | Zbl

[8] J.-M. Coron, Control and nonlinearity, vol. 136. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007). | MR | Zbl

[9] T.I. Fossen, Guidance and Control of Ocean Vehicles. Wiley, New York (1994).

[10] T.I. Fossen, A nonlinear unified state-space model for ship maneuvering and control in a seaway. Int. J. Bifur. Chaos Appl. Sci. Engrg. 15 (2005) 2717-2746. | MR | Zbl

[11] O. Glass, Exact boundary controllability of 3-D Euler equation. ESAIM: COCV 5 (2000) 1-44. | Numdam | MR | Zbl

[12] O. Glass and L. Rosier, On the control of the motion of a boat. Math. Models Methods Appl. Sci. 23 (2013) 617-670. | MR

[13] P. Hartman, Ordinary differential equations, 2nd edn. Birkhäuser Boston, Mass. (1982). | MR | Zbl

[14] V.I. Judovič. A two-dimensional non-stationary problem on the flow of an ideal incompressible fluid through a given region. Mat. Sb. (N.S.) 64 (1964) 562-588. | MR

[15] A.V. Kazhikhov, Note on the formulation of the problem of flow through a bounded region using equations of perfect fluid. Prikl. Matem. Mekhan. 44 (1980) 947-950. | MR | Zbl

[16] K. Kikuchi, The existence and uniqueness of nonstationary ideal incompressible flow in exterior domains in R3. J. Math. Soc. Japan 38 (1986) 575-598. | MR | Zbl

[17] M. Krieg, P. Klein, R. Hodgkinson and K. Mohseni, A hybrid class underwater vehicle: Bioinspired propulsion, embedded system, and acoustic communication and localization system. Marine Tech. Soc. J. 45 (2001) 153-164.

[18] H. Lamb, Hydrodynamics. Cambridge Mathematical Library, 6th edition. Cambridge University Press, Cambridge (1993). With a foreword by R.A. Caflisch [Russel E. Caflisch]. | JFM | MR | Zbl

[19] N.E. Leonard, Stability of a bottom-heavy underwater vehicle. Automatica J. IFAC 33 (1997) 331-346. | MR | Zbl

[20] N.E. Leonard and J.E. Marsden, Stability and drift of underwater vehicle dynamics: mechanical systems with rigid motion symmetry. Phys. D 105 (1997) 130-162. | MR | Zbl

[21] S.P. Novikov and I. Shmel'Tser, Periodic solutions of Kirchhoff equations for the free motion of a rigid body in a fluid and the extended Lyusternik-Shnirel'man-Morse theory. I. Funktsional. Anal. i Prilozhen. 15 (1981) 54-66. | MR | Zbl

[22] J.H. Ortega, L. Rosier and T. Takahashi, Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid. ESAIM: M2AN 39 (2005) 79-108. | Numdam | MR | Zbl

[23] J.H. Ortega, L. Rosier and T. Takahashi, On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid. Ann. Inst. Henri Poincaré Anal. Non Linéaire 24 (2007) 139-165. | Numdam | MR | Zbl

[24] C. Rosier and L. Rosier, Smooth solutions for the motion of a ball in an incompressible perfect fluid. J. Funct. Anal. 256 (2009) 1618-1641. | MR | Zbl

[25] E.D. Sontag, Mathematical control theory, vol. 6. Texts in Applied Mathematics. Springer-Verlag, New York (1990). Deterministic finite-dimensional systems. | MR | Zbl

[26] B.L. Stevens and F.L. Lewis, Aircraft Control and Simulation. John Wiley & Sons, Inc., Hoboken, New Jersey (2003).

[27] Y. Wang and A. Zang, Smooth solutions for motion of a rigid body of general form in an incompressible perfect fluid. J. Differ. Eqs. 252 (2012) 4259-4288. | MR | Zbl

[28] Y. Xu, Z. Ren and K. Mohseni, Lateral line inspired pressure feedforward for autonomous underwater vehicle control. In Proc. of IEEE/RSJ IROS Workshop Robot. Environmental Monitor (2012) 1-6.

Cité par Sources :