The integer transfinite diameter of intervals and totally real algebraic integers
Journal de théorie des nombres de Bordeaux, Volume 9 (1997) no. 1, p. 137-168

In this paper we build on some recent work of Amoroso, and Borwein and Erdélyi to derive upper and lower estimates for the integer transfinite diameter of small intervals [r s,r s+δ], where r s is a fixed rational and δ0. We also study functions g - ,g,g + associated with transfinite diameters of Farey intervals. Then we consider certain polynomials, which we call critical polynomials, associated to a given interval I. We show how to estimate from below the proportion of roots of an integer polynomial which is sufficiently small on I which must also be roots of the critical polynomial. This generalises now classical work of Aparicio, and extends the techniques of Borwein and Erdélyi from the critical polynomial x for [0,1] to any critical polynomial for an arbitrary interval. As an easy consequence of our results, we obtain an inequality about algebraic integers of independent interest : if α is totally real, with minimum conjugate α 1 , then, with a small number of explicit exceptions, the mean value of α and its conjugates is at least α 1 +1.6.

Dans cet article, nous inspirant de travaux récents d’Amoroso d’une part, de Borwein et Erdélyi d’autre part, nous donnons une majoration et une minoration du diamètre transfini entier de petits intervalles [r s,r s+δ] ou r s est un rationnel fixé et δ tend vers 0. Nous étudions également des fonctions g - ,g,g + associées au diamètre transfini d’intervalles de Farey. Nous introduisons ensuite la notion de polynômes critiques pour un intervalle I. Nous montrons que ces polynômes ont la propriété de diviser tout polynôme à coefficients entiers ayant un maximum suffisamment petit sur I. Aparicio, puis Borwein et Erdélyi ont obtenu des résultats pour le polynôme critique x sur l’intervalle [0,1] ; résultats que nous prolongeons à tout polynôme critique sur un intervalle arbitraire. Par ailleurs, comme conséquence facile de nos résultats, nous montrons : si α est une entier algébrique totalement réel, de plus petit conjugué α 1 alors, sauf pour un petit nombre d’exceptions explicites, la valeur moyenne de α et de ses conjugués est supérieure à α 1 +1.6.

@article{JTNB_1997__9_1_137_0,
     author = {Flammang, Val\'erie and Rhin, G. and Smyth, Chris J.},
     title = {The integer transfinite diameter of intervals and totally real algebraic integers},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     publisher = {Universit\'e Bordeaux I},
     volume = {9},
     number = {1},
     year = {1997},
     pages = {137-168},
     zbl = {0892.11033},
     mrnumber = {1469665},
     language = {en},
     url = {http://www.numdam.org/item/JTNB_1997__9_1_137_0}
}
Flammang, V.; Rhin, G.; Smyth, C. J. The integer transfinite diameter of intervals and totally real algebraic integers. Journal de théorie des nombres de Bordeaux, Volume 9 (1997) no. 1, pp. 137-168. http://www.numdam.org/item/JTNB_1997__9_1_137_0/

[Am] F. Amoroso, Sur le diamètre transfini entier d'un intervalle réel, Ann. Inst. Fourier Grenoble 40 (1990,), 885-911. | Numdam | MR 1096596 | Zbl 0713.41004

[Ap1] E. Aparicio, Neuvas acotaciones para la desviación diofántica uniforme minima a cero en [0, 1] y [0,1/4], VI Jornadas de Matemáticas Hispano-Lusas, Santander (1979), 289-291. | MR 754592

[Ap2] E. Aparicio, Sobre unos sistemas de numeros enteros algebraicos de D.S. Gorshkov y sus aplicaciones al cálculo, Rev. Mat. Hisp.-Amer. 41 (1981), 3-17.

[Ap3] E. Aparicio, On the asymptotic structure of the polynomials of minimal Diophantic deviation from zero, J. Approx. Th. 55 (1988), 270-278. | MR 968933 | Zbl 0663.41008

[BoEr] P. Borwein and T. Erdélyi, The integer Chebyshev problem, Math. Comp. 68 (1996), 661-681. | MR 1333305 | Zbl 0859.11044

[Che] E.W. Cheney, Introduction to approximation theory, McGraw-Hill, New York, 1966. | MR 222517 | Zbl 0161.25202

[Chu] G. Chudnovsky, Number theoretic applications of polynomials with rational coefficients defined by extremality conditions, in Arithmetic and Geometry, M.Artin and J.Tate, Editors, vol. 1, Birkhaüser, Boston, 1983, 61-105. | MR 717590 | Zbl 0547.10029

[DaSm] A.M. Davie and C.J. Smyth, On a limiting fractal measure defined by conjugate algebraic integers, Publications Math. d'Orsay (1987-88), 93-103. | MR 993304 | Zbl 0692.12002

[Fek] M. Fekete, Über die Verteilung der Wurzelen bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math Zeit. 17 (1923), 228-249. | JFM 49.0047.01 | MR 1544613

[Fer] Le Baron O. Ferguson, Approximation by polynomials with integral coefficients, AMS, Rhode Island, 1980. | MR 560902 | Zbl 0441.41003

[F11] V. Flammang, Sur la longueur des entiers algébriques totalement positifs, J. Number Th. 54 (1995), 60-72. | MR 1352636 | Zbl 0831.11057

[F12] V. Flammang, Sur le diamètre transfini entier d'un intervalle à extrémités rationnelles, Ann. Inst. Fourier Grenoble 45 (1995), 779-793. | Numdam | MR 1340952 | Zbl 0826.41009

[F13] V. Flammang, Mesures de polynômes. Application au diamètre transfini entier, Thèse, Univ. de Metz, 1994.

[Gol] G.M. Golusin, Geometric theory of functions of a complex variable 26 (1969), AMS Translations of Mathematical Monographs. | MR 247039 | Zbl 0183.07502

[Gor] D.S. Gorškov, On the distance from zero on the interval [0,1] of polynomials with integral coefficients (Russian), Proceedings of the Third All Union Mathematical congress (Moscow 1956), vol. 4, Akad. Nauk. SSSR, 1959, 5-7.

[HaSa] L. Habsieger and B. Salvy, On integer Chebyshev polynomials (1995), preprint A2X n° 95-21, Université Bordeaux I. | MR 1401941

[La] M. Langevin, Diamètre transfini entier d'un intervalle à extrémités rationnelles (d'après F.Amoroso), preprint.

[Mo] H.L. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS84, Amer. Math. Soc., Providence, R.I., 1994. | MR 1297543 | Zbl 0814.11001

[Rh1] G. Rhin, Approximants de Padé et mesures effectives d'irrationalité, Séminaire de Théorie des nombres de Paris 1985-86, C. Goldstein(Ed.), vol. 71, Progress in Math., Birkhäuser, 155-164. | MR 1017910 | Zbl 0632.10034

[Rh2] G. Rhin, Seminar, Pisa, 1989, unpublished.

[Sm1] C.J. Smyth, On the measure of totally real algebraic integers, J. Aust. Math. Soc. (Ser. A) 30 (1980), 137-149. | MR 607924 | Zbl 0457.12001

[Sm2] C.J. Smyth, The mean value of totally real algebraic integers, Math. Comp. 42 (1984), 663-681. | MR 736460 | Zbl 0536.12006

[Sm3] C.J. Smyth, Totally positive algebraic integers of small trace, Ann. Inst. Fourier Grenoble 34 (1984), 1-28. | Numdam | MR 762691 | Zbl 0534.12002

[St] N. Steinmetz, Rational iteration: complex analytical dynamical systems, vol. 16, de Gruyter Studies in Mathematics, Berlin, 1993. | MR 1224235 | Zbl 0773.58010