S-integral points on elliptic curves - Notes on a paper of B. M. M. de Weger
Journal de théorie des nombres de Bordeaux, Volume 13 (2001) no. 2, p. 443-451

In this paper we give a much shorter proof for a result of B.M.M de Weger. For this purpose we use the theory of linear forms in complex and p-adic elliptic logarithms. To obtain an upper bound for these linear forms we compare the results of Hajdu and Herendi and Rémond and Urfels.

Nous donnons une nouvelle preuve beaucoup plus courte d’un résultat de B. M. M de Weger. Cette preuve est basée sur la théorie des formes linéaires de logarithmes complexes, p-adiques et elliptiques, pour lesquelles nous obtenons une majoration en confrontant les résultats de Hajdu et Herendi à ceux de Rémond et Urfels.

@article{JTNB_2001__13_2_443_0,
     author = {Herrmann, Emanuel and Peth\"o, Attila},
     title = {$S$-integral points on elliptic curves - Notes on a paper of B. M. M. de Weger},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     publisher = {Universit\'e Bordeaux I},
     volume = {13},
     number = {2},
     year = {2001},
     pages = {443-451},
     zbl = {1065.11014},
     mrnumber = {1881378},
     language = {en},
     url = {http://www.numdam.org/item/JTNB_2001__13_2_443_0}
}
Herrmann, Emanuel; Pethö, Attila. $S$-integral points on elliptic curves - Notes on a paper of B. M. M. de Weger. Journal de théorie des nombres de Bordeaux, Volume 13 (2001) no. 2, pp. 443-451. http://www.numdam.org/item/JTNB_2001__13_2_443_0/

[1] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language. J. Symb. Comp., 24, 3/4 (1997), 235-265. (See also the Magma home page at http://www.maths.usyd.edu.au:8000/u/magma/) | MR 1484478 | Zbl 0898.68039

[2] S. David, Minorations de formes linéaires de logarithmes elliptiques. Mém. Soc. Math. France(N.S.) 62 (1995). | Numdam | MR 1385175 | Zbl 0859.11048

[3] J. Gebel, A. Peth, H.G. Zimmer, Computing integral points on elliptic curves. Acta Arith. 68 (1994), 171-192. | MR 1305199 | Zbl 0816.11019

[4] J. Gebel, A. Peth, H.G. Zimmer, Computing S-integral points on elliptic curves. Algorithmic number theory (Talence, 1996), 157-171, Lecture Notes in Comput. Sci. 1122, Springer, Berlin, 1996. | MR 1446509 | Zbl 0899.11012

[5] A. Peth, H.G. Zimmer, J. Gebel, E. Herrmann, Computing all S-integral points on elliptic curves. Math. Proc. Cambr. Phil. Soc. 127 (1999), 383-402. | MR 1713117 | Zbl 0949.11033

[6] G. Rémond, F. Urfels, Approximation diophantienne de logarithmes elliptiques p-adiques. J. Numb. Th. 57 (1996), 133-169. | MR 1378579 | Zbl 0853.11055

[7] J.H. Silverman, The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics 106, Springer-Verlag, New York, 1986. | MR 817210 | Zbl 0585.14026

[8] N.P. Smart, S-integral Points on elliptic curves. Math. Proc. Cambr. Phil. Soc. 116 (1994), 391-399. | MR 1291748 | Zbl 0817.11031

[9] J.T. Tate, Algorithm for determining the type of a singular fibre in an elliptic pencil. Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), 33-52, Lecture Notes in Math. 476, Springer, Berlin, 1975. | MR 393039

[10] N. Tzanakis, Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations. Acta Arith. 75 (1996), 165-190. | MR 1379397 | Zbl 0858.11016

[11] B.M.M. De Weger, Algorithms for Diophantine equations. PhD Thesis, Centr. for Wiskunde en Informatica, Amsterdam, 1987. | Zbl 0687.10013

[12] B.M.M. De Weger, S-integral solutions to a Weierstrass equation, J. Théor. Nombres Bordeaux 9 (1997), 281-301. | Numdam | MR 1617399 | Zbl 0898.11009

[13] Apecs, Arithmetic of plane elliptic curves, ftp://ftp.math.mcgill.ca/pub/apecs.

[14] mwrank, a package to compute ranks of elliptic curves over the rationals. http://www.maths.nott.ac.uk/personal/jec/ftp/progs.

[15] Simath, a computer algebra system for algorithmic number theory. http://simath.math.unisb.de.