On donne une nouvelle condition suffisante pour l’existence des mesures -adiques admissibles obtenues à partir de suites de distributions à valeurs dans les espaces de formes modulaires. On utilise la projection caractéristique sur le sous-espace primaire associé à une valeur propre non nulle de l’opérateur d’Atkin. Notre condition est exprimée en termes des congruences entre les coefficients de Fourier des formes modulaires . On montre comment vérifier ces congruences, et on traite plusieurs applications. On obtient donc une explication conceptuelle des formules de Yu.Manin pour les distributions attachées à la fonction d’une forme parabolique primitive de poids .
We give a new sufficient condition for the existence of admissible -adic measures obtained from sequences of distributions with values in spaces of modular forms. We use the characteristic projection on the primary subspace associated to a non zero eigenvalue of the Atkin operator . Our condition is expressed in terms of congruences between the Fourier coefficients of the modular forms . We show how to verify these congruences and we give several applications. So we get a conceptual explanation for the Yu.Manin’s formulas for the distributions attached to the -function, , of a primitive cuspform of weight .
@article{JTNB_2003__15_3_805_0, author = {Panchishkin, Alexei}, title = {Sur une condition suffisante pour l{\textquoteright}existence de mesures $p$-adiques admissibles}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {805--829}, publisher = {Universit\'e Bordeaux I}, volume = {15}, number = {3}, year = {2003}, mrnumber = {2142237}, zbl = {1078.11038}, language = {fr}, url = {http://archive.numdam.org/item/JTNB_2003__15_3_805_0/} }
TY - JOUR AU - Panchishkin, Alexei TI - Sur une condition suffisante pour l’existence de mesures $p$-adiques admissibles JO - Journal de théorie des nombres de Bordeaux PY - 2003 SP - 805 EP - 829 VL - 15 IS - 3 PB - Université Bordeaux I UR - http://archive.numdam.org/item/JTNB_2003__15_3_805_0/ LA - fr ID - JTNB_2003__15_3_805_0 ER -
%0 Journal Article %A Panchishkin, Alexei %T Sur une condition suffisante pour l’existence de mesures $p$-adiques admissibles %J Journal de théorie des nombres de Bordeaux %D 2003 %P 805-829 %V 15 %N 3 %I Université Bordeaux I %U http://archive.numdam.org/item/JTNB_2003__15_3_805_0/ %G fr %F JTNB_2003__15_3_805_0
Panchishkin, Alexei. Sur une condition suffisante pour l’existence de mesures $p$-adiques admissibles. Journal de théorie des nombres de Bordeaux, Tome 15 (2003) no. 3, pp. 805-829. http://archive.numdam.org/item/JTNB_2003__15_3_805_0/
[AV] JACQUES VÉLU, Distributions p-adiques associées aux séries de Hecke. Astérisque 24-25 (1975), 119-131. | MR | Zbl
,[B-SchP] On the central critical value of the triple product L-function. Seminaire de theorie des nombres, Paris (1993-94), Birkhäuser, 1996, 3-46. | Zbl
, ,[Co] On p-adic L-functions. Séminaire Bourbaki, 40ème année, 1987-88, no. 701 (1989), 177-178. | Numdam | MR | Zbl
,[Co-PeRi] On p-adic L-functions attached to motives over Q. Advanced Studies in Pure Math. 17 (1989), 23-54. | MR | Zbl
, ,[Colm98] Fonctions L p-adiques. Séminaire Bourbaki, 51 ème année, 1998-99, no. 851. | Numdam
,[De-Ri] Values of Abelian L-functions at negative integers over totally real fields. Invent. Math. 59 (1980) 227-286. | MR | Zbl
, ,[Jo] Familles de symboles modulaires et fonctions L p-adiques. Thèse de Doctorat, Institut Fourier (Grenoble), 18 décembre 1998. http://www-fourier.ujf-grenoble.fr/THESE/ps/t92.ps.gz
,[Hi85] A p-adic measure attached to the zeta functions associated with two elliptic cusp forms I. Invent. Math. 79 (1985), 159-195. | MR | Zbl
,[Hi93] Elementary theory of L-functions and Eisenstein series. Cambridge Univ. Press, 1993. | MR | Zbl
,[GaHa] Special values of triple product L-functions. Am. J. Math. 115 (1993), 161-240. | MR | Zbl
, ,[Ka76] p-adic interpolation of real analytic Eisenstein series. Ann. of Math. 104 (1976), 459-571 | MR | Zbl
,[Ka78] p-adic L-functions for CM-fields. Invent. Math. 48 (1978), 199-297. | MR | Zbl
,[KI] Über die Werte Dedekindscher Zetafunktionen. Math. Ann. 145 (1962), 265-272 | MR | Zbl
,[LBP] Sur les produits triples A-adiques. Communications in Algebra 29 no. 9 (2001), 3727-3740. | MR | Zbl
, ,[Ma73] Periods of cusp forms and p-adic Hecke series. Mat. Sbornik 92 (1973), 378-401. | MR | Zbl
,[Man-Pa] Convolutions of Hecke series and their values at integral points. Mat. Sbornik 104 (1977), 617-651. | MR | Zbl
, ,[Miy] Modular forms. Transl. from the Japanese by Yoshitaka Maeda. Berlin etc. Springer-Verlag. viii, 1989. | MR | Zbl
,[MTT] On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. Math. 84 (1986), 1-48. | MR | Zbl
, , ,[PLNM] Non-Archimedean L-functions of Siegel and Hilbert modular forms. Lecture Notes in Math. 1471, Springer-Verlag, 2nd augmented edition 2003.
,[PTr] Produits triples des formes modulaires et leur interpolation p-adique par la méthode d'Amice-Vélu. Manuscript de l'exposé au Colloque à la mémoire d'Yvette Amice, (mars 1994), 1-27.
,[PIsr] On the Siegel-Eisenstein measure. Israel Journal of Mathematics 120 (2000), 467-509. | MR | Zbl
,[PaTV] Two variable p-adic L functions attached to eigenfamilies of positive slope. Inventiones Math. 154 no. 3 (2003), 551 -615. | MR | Zbl
,[PaB1] Arithmetical differential operators on nearly holomorphic Siegel modular forms. Preprint MPI 41 (2002), 1-52.
,[PaB1] Admissible measures for standard L-functions and nearly holomorphic Siegel modular forms. Preprint MPI 42 (2002), 1-65.
,[PIAS] On p-adic integration in spaces of modular forms and its applications. J. Math. Sci. New York 115 no.3 (2003), 2357-2377. | MR | Zbl
,[PNM] A new method of constructing p-adic L-functions associated with modular forms. Moscow Mathematical Journal 2 (2002), 1-16. | Zbl
,[Ra52] The scalar product of modular forms, Proc. London math. Soc. 3 (1952), 198-217. | MR | Zbl
,[Se73] Formes modulaires et fonctions zêta p-adiques. Lecture Notes in Math. 350 (1973), 191-286. | MR | Zbl
,[Shi71] Introduction to the Arithmetic Theory of Automorphic Functions. Princeton Univ. Press, 1971. | MR | Zbl
,[Shi77] On the periods of modular forms. Math. Annalen 229 (1977), 211-221. | MR | Zbl
,[Vi76] Non-archimedean measures connected with Dirichlet series. Math. USSR Sb. 28 (1976), 216-228. | Zbl
,