Structural properties of solutions to total variation regularization problems
ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 4, pp. 799-810.
@article{M2AN_2000__34_4_799_0,
     author = {Ring, Wolfgang},
     title = {Structural properties of solutions to total variation regularization problems},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {799--810},
     publisher = {Dunod},
     address = {Paris},
     volume = {34},
     number = {4},
     year = {2000},
     mrnumber = {1784486},
     zbl = {1018.49021},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_2000__34_4_799_0/}
}
TY  - JOUR
AU  - Ring, Wolfgang
TI  - Structural properties of solutions to total variation regularization problems
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2000
SP  - 799
EP  - 810
VL  - 34
IS  - 4
PB  - Dunod
PP  - Paris
UR  - http://archive.numdam.org/item/M2AN_2000__34_4_799_0/
LA  - en
ID  - M2AN_2000__34_4_799_0
ER  - 
%0 Journal Article
%A Ring, Wolfgang
%T Structural properties of solutions to total variation regularization problems
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2000
%P 799-810
%V 34
%N 4
%I Dunod
%C Paris
%U http://archive.numdam.org/item/M2AN_2000__34_4_799_0/
%G en
%F M2AN_2000__34_4_799_0
Ring, Wolfgang. Structural properties of solutions to total variation regularization problems. ESAIM: Modélisation mathématique et analyse numérique, Tome 34 (2000) no. 4, pp. 799-810. http://archive.numdam.org/item/M2AN_2000__34_4_799_0/

[1] R. Acar and C. R. Vogel, Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems 10 (1994) 1217-1229. | MR | Zbl

[2] V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems. Math. Sci. Engrg. 190 (1993). | MR | Zbl

[3] A. Chambolle and P. L. Lions, Image recovery via total variation minimization and related problems. Numer. Math. 76 (1997) 167-188. | MR | Zbl

[4] G. Chavent and K. Kunisch, Regularization of linear least squares problems by total bounded variation. ESAIM Control Optim. Calc. Var. 2 (1997) 359-376. | Numdam | MR | Zbl

[5] D. Dobson and O. Scherzer, Analysis of regularized total variation penalty methods for denoising. Inverse Problems 12 (1996) 601-617. | MR | Zbl

[6] D. C. Dobson and F. Santosa, Recovery of blocky images from noisy and blurred data. SIAM J. Appl. Math. 56 (1996) 1181-1192. | MR | Zbl

[7] I. Ekeland and T. Turnbull, Infinite-Dimensional Optimization and Convexity. Chicago Lectures in Math., The University of Chicago Press, Chicago and London (1983). | MR | Zbl

[8] L. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992). | MR | Zbl

[9] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. Grundlehren Math. Wiss. 224 (1977). | MR | Zbl

[10] E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Monogr. Math. 80 (1984). | MR | Zbl

[11] K. Ito and K. Kunisch, An active set strategy based on the augmented lagrantian formulation for image restauration. RAIRO Modél Math. Anal. Numér. 33 (1999) 1-21. | Numdam | MR | Zbl

[12] K. Ito and K. Kunisch, BV-type regularization methods for convoluted objects with edge-flat-grey scales. Inverse Problems 16 (2000) 909-928. | MR | Zbl

[13] M. Z. Nashed and O. Scherzer, Least squares and bounded variation regularization with nondifferentiable functionals. Numer. Funct. Anal. Optim. 19 (1998) 873-901. | MR | Zbl

[14] M. Nikolova, Local strong homogeneity of a regularized estimator. SIAM J. Appl. Math. (to appear). | MR | Zbl

[15] L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithm. Physica D 60 (1992) 259-268. | Zbl

[16] W. Rudin, Real and Complex Analysis, 3rd edn McGraw-Hill, New York-St Louis-San Francisco (1987). | MR | Zbl

[17] C. Vogel and M. Oman, Iterative methods for total variation denoising. SIAM J. Sci. Comp. 17 (1996) 227-238. | MR | Zbl

[18] W. P. Ziemer, Weakly Differentiable Functions. Grad. Texts in Math. 120 (1989). | MR | Zbl