@article{M2AN_2000__34_4_799_0, author = {Ring, Wolfgang}, title = {Structural properties of solutions to total variation regularization problems}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {799--810}, publisher = {Dunod}, address = {Paris}, volume = {34}, number = {4}, year = {2000}, mrnumber = {1784486}, zbl = {1018.49021}, language = {en}, url = {http://archive.numdam.org/item/M2AN_2000__34_4_799_0/} }
TY - JOUR AU - Ring, Wolfgang TI - Structural properties of solutions to total variation regularization problems JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 799 EP - 810 VL - 34 IS - 4 PB - Dunod PP - Paris UR - http://archive.numdam.org/item/M2AN_2000__34_4_799_0/ LA - en ID - M2AN_2000__34_4_799_0 ER -
%0 Journal Article %A Ring, Wolfgang %T Structural properties of solutions to total variation regularization problems %J ESAIM: Modélisation mathématique et analyse numérique %D 2000 %P 799-810 %V 34 %N 4 %I Dunod %C Paris %U http://archive.numdam.org/item/M2AN_2000__34_4_799_0/ %G en %F M2AN_2000__34_4_799_0
Ring, Wolfgang. Structural properties of solutions to total variation regularization problems. ESAIM: Modélisation mathématique et analyse numérique, Volume 34 (2000) no. 4, pp. 799-810. http://archive.numdam.org/item/M2AN_2000__34_4_799_0/
[1] Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems 10 (1994) 1217-1229. | MR | Zbl
and ,[2] Analysis and Control of Nonlinear Infinite Dimensional Systems. Math. Sci. Engrg. 190 (1993). | MR | Zbl
,[3] Image recovery via total variation minimization and related problems. Numer. Math. 76 (1997) 167-188. | MR | Zbl
and ,[4] Regularization of linear least squares problems by total bounded variation. ESAIM Control Optim. Calc. Var. 2 (1997) 359-376. | Numdam | MR | Zbl
and ,[5] Analysis of regularized total variation penalty methods for denoising. Inverse Problems 12 (1996) 601-617. | MR | Zbl
and ,[6] Recovery of blocky images from noisy and blurred data. SIAM J. Appl. Math. 56 (1996) 1181-1192. | MR | Zbl
and ,[7] Infinite-Dimensional Optimization and Convexity. Chicago Lectures in Math., The University of Chicago Press, Chicago and London (1983). | MR | Zbl
and ,[8] Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992). | MR | Zbl
and ,[9] Elliptic Partial Differential Equations of Second Order. Grundlehren Math. Wiss. 224 (1977). | MR | Zbl
and ,[10] Minimal Surfaces and Functions of Bounded Variation. Monogr. Math. 80 (1984). | MR | Zbl
,[11] An active set strategy based on the augmented lagrantian formulation for image restauration. RAIRO Modél Math. Anal. Numér. 33 (1999) 1-21. | Numdam | MR | Zbl
and ,[12] BV-type regularization methods for convoluted objects with edge-flat-grey scales. Inverse Problems 16 (2000) 909-928. | MR | Zbl
and ,[13] Least squares and bounded variation regularization with nondifferentiable functionals. Numer. Funct. Anal. Optim. 19 (1998) 873-901. | MR | Zbl
and ,[14] Local strong homogeneity of a regularized estimator. SIAM J. Appl. Math. (to appear). | MR | Zbl
,[15] Nonlinear total variation based noise removal algorithm. Physica D 60 (1992) 259-268. | Zbl
, and ,[16] Real and Complex Analysis, 3rd edn McGraw-Hill, New York-St Louis-San Francisco (1987). | MR | Zbl
,[17] Iterative methods for total variation denoising. SIAM J. Sci. Comp. 17 (1996) 227-238. | MR | Zbl
and ,[18] Weakly Differentiable Functions. Grad. Texts in Math. 120 (1989). | MR | Zbl
,