Classification: 49M29, 49L25

Keywords: optimal control, Hamilton-Jacobi, hamiltonian system, Pontryagin principle

@article{M2AN_2006__40_1_149_0, author = {Sandberg, Mattias and Szepessy, Anders}, title = {Convergence rates of symplectic Pontryagin approximations in optimal control theory}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, publisher = {EDP-Sciences}, volume = {40}, number = {1}, year = {2006}, pages = {149-173}, doi = {10.1051/m2an:2006002}, zbl = {1091.49027}, mrnumber = {2223508}, language = {en}, url = {http://www.numdam.org/item/M2AN_2006__40_1_149_0} }

Sandberg, Mattias; Szepessy, Anders. Convergence rates of symplectic Pontryagin approximations in optimal control theory. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 40 (2006) no. 1, pp. 149-173. doi : 10.1051/m2an:2006002. http://www.numdam.org/item/M2AN_2006__40_1_149_0/

[1] Volatility smile by multilevel least square. Int. J. Theor. Appl. Finance 5 (2002) 619-643. | Zbl 1107.91319

and ,[2] Solutions de viscosité des équations de Hamilton-Jacobi. Springer-Verlag, Paris. Math. Appl. (Berlin) 17 (1994). | MR 1613876 | Zbl 0819.35002

,[3] On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations. ESAIM: M2AN 36 (2002) 33-54. | Numdam | Zbl 0998.65067

and ,[4] The Pontryagin maximum principle from dynamic programming and viscosity solutions to first-order partial differential equations. Trans. Amer. Math. Soc. 298 (1986) 635-641. | Zbl 0618.49011

and ,[5] Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, with appendices by M. Falcone and P. Soravia, Systems and Control: Foundations and Applications. Birkhäuser Boston, Inc., Boston, MA (1997). | MR 1484411 | Zbl 0890.49011

and ,[6] Some characterizations of the optimal trajectories in control theory. SIAM J. Control Optim. 29 (1991) 1322-1347. | Zbl 0744.49011

and ,[7] Regularity results for solutions of a class of Hamilton-Jacobi equations. Arch. Rational Mech. Anal. 140 (1997) 197-223. | Zbl 0901.70013

, and ,[8] Symplectic Pontryagin approximations for optimal design

, and ,[9] Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277 (1983) 1-42. | Zbl 0599.35024

and ,[10] Two approximations of solutions of Hamilton-Jacobi equations. Math. Comp. 43 (1984) 1-19. | Zbl 0556.65076

and ,[11] Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 282 (1984) 487-502. | Zbl 0543.35011

, and ,[12] Pricing with a smile. Risk (1994) 18-20.

,[13] Regularization of Inverse Problems. Kluwer Academic Publishers Group, Dordrecht. Math. Appl. 375 (1996). | MR 1408680 | Zbl 0859.65054

, and ,[14] Partial Differential Equations. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI (1998). | MR 1625845 | Zbl 0902.35002

,[15] Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods. J. Comput. Phys. 175 (2002) 559-575. | Zbl 1007.65060

and ,[16] Contigent cones to reachable sets of control systems. SIAM J. Control Optim. 27 (1989) 170-198. | Zbl 0671.49030

,[17] Exact and approximate controllability for distributed parameter systems. Acta numerica (1994), 269-378, Acta Numer., Cambridge Univ. Press, Cambridge (1994). | Zbl 0838.93013

and ,[18] Exact and approximate controllability for distributed parameter systems. Acta numerica (1995), 159-333, Acta Numer., Cambridge Univ. Press, Cambridge (1995). | Zbl 0838.93014

and ,[19] Geometric Numerical Integrators: Structure Preserving Algorithms for Ordinary Differential Equations, Springer (2002). | MR 1904823 | Zbl 0994.65135

, and ,[20] ${L}^{1}$-stability and error estimates for approximate Hamilton-Jacobi solutions. Numer. Math. 87 (2001) 701-735. | Zbl 0977.65059

and ,[21] Applied Shape Optimization for Fluids. Numerical Mathematics and Scientific Computation. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (2001). | MR 1835648 | Zbl 0970.76003

and ,[22] Optimization, relaxation and Young measures. Bull. Amer. Math. Soc. (N.S.) 36 (1999) 27-58. | Zbl 0916.49011

,[23] Optimization, Algorithms and Consistent Approximations, Springer-Verlag, New York. Appl. Math. Sci. 124. (1997). | MR 1454128 | Zbl 0899.90148

,[24] The Mathematical Theory of Optimal Processes, Pergamon Press (1964). | MR 186436 | Zbl 0117.31702

, , and ,[25] Convergence rates for Euler approximation of non convex differential inclusions, work in progress.

,[26] Convergence rates for Symplectic Euler approximations of the Ginzburg-Landau equation, work in progress.

,[27] Existence of viscosity solutions of Hamilton-Jacobi equations. J. Differential Equations 56 (1985) 345-390. | Zbl 0506.35020

,[28] Generalized Solutions of First-Order PDEs. The Dynamical Optimization Perspective. Translated from the Russian. Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA (1995). | MR 1320507 | Zbl 0820.35003

,[29] Computational Methods for Inverse Problems. Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). | MR 1928831 | Zbl 1008.65103

,[30] Lectures on the Calculus of Variations and Optimal Control Theory. Saunders Co., Philadelphia-London-Toronto, Ont. (1969). | MR 259704 | Zbl 0177.37801

,