Quantification d'une variété symplectique
Publications du Département de mathématiques (Lyon), no. 4B (1986), pp. 35-54.
@article{PDML_1986___4B_35_0,
     author = {Patissier, G.},
     title = {Quantification d'une vari\'et\'e symplectique},
     journal = {Publications du D\'epartement de math\'ematiques (Lyon)},
     pages = {35--54},
     publisher = {Universit\'e Claude Bernard - Lyon 1},
     number = {4B},
     year = {1986},
     zbl = {0617.58022},
     mrnumber = {905476},
     language = {fr},
     url = {http://archive.numdam.org/item/PDML_1986___4B_35_0/}
}
TY  - JOUR
AU  - Patissier, G.
TI  - Quantification d'une variété symplectique
JO  - Publications du Département de mathématiques (Lyon)
PY  - 1986
DA  - 1986///
SP  - 35
EP  - 54
IS  - 4B
PB  - Université Claude Bernard - Lyon 1
UR  - http://archive.numdam.org/item/PDML_1986___4B_35_0/
UR  - https://zbmath.org/?q=an%3A0617.58022
UR  - https://www.ams.org/mathscinet-getitem?mr=905476
LA  - fr
ID  - PDML_1986___4B_35_0
ER  - 
Patissier, G. Quantification d'une variété symplectique. Publications du Département de mathématiques (Lyon), no. 4B (1986), pp. 35-54. http://archive.numdam.org/item/PDML_1986___4B_35_0/

[1] Abraham, Marsden, Foundations of Mechanics, Ed. Benjamin (1978). | Zbl 0393.70001

[2] V.I. Arnold, Méthodes mathématiques de la Mécanique classique. Editions MIR. | Zbl 0385.70001

[3] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Deformation theory and Quantization I, Annals of Physics (1978), 61-151. | MR 496157 | Zbl 0377.53024

[4] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Deformation theory and Quantization II, Annals of Physics (1978). | Zbl 0377.53025

[5] F.A. Berezin, M.A. Subin, Symbols of operators and quantization, Colloquia Mathematica Societatis Janos Bolyai, 5» Hilbert spac, op. Tihany (Hungary) (1970), | Zbl 0262.47036

[6] Guillemin, S. Sternberg, Geometric asymptotics, Math. Surveys, n° 14 (1977) | MR 516965 | Zbl 0364.53011

[7] Hirzebruch, Topological methods in algebraic geometry, Springer (1966). | Zbl 0070.16302

[8] L. Hormander, Fourier integral operators I, Acta Mathematica 127, (1971), p. 79-183. | MR 388463 | Zbl 0212.46601

[9] L. Hormander, The WEYL calculus of pseudo differential operators, Comm. Pure, Appl. Math. 32 (1979), p. 359-443. | MR 517939 | Zbl 0388.47032

[10] M.V. Karasev, V.P. Maslov, Pseudo-differential operators and a canonical operator in general symplectic manifold. Math USSR. Izvestiya, Vol. 23 (1984), n° 2. | Zbl 0554.58048

[11] M.V. Karasev, V.P. Maslov, Asymptotic and geometric Quantization, Russian Math. Surveys 39 : 6 (1984), p. 133-205. | MR 771100 | Zbl 0588.58031

[12] V.P. Maslov, Théorie des perturbations et méthodes asymptotiques, Dunod, Paris (1972). | Zbl 0247.47010

[13] Voros, An algebra of pseudo-differential operators and the asymptotics of Quantum Mechanics. Journal of funct. analysis, Vol. 29, n° 1, (1978), p. 104-132. | MR 496088 | Zbl 0386.47031

[14] N.R. Wallach, Symplectic Geometry and FOURIER Analysis, Math. SCI PRESS (1977). | MR 488148 | Zbl 0379.53010