@article{RSMUP_2015__134__1_0, author = {Lazda, Christopher}, title = {Relative fundamental groups and rational points}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {1--46}, publisher = {Seminario Matematico of the University of Padua}, volume = {134}, year = {2015}, mrnumber = {3428414}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_2015__134__1_0/} }
TY - JOUR AU - Lazda, Christopher TI - Relative fundamental groups and rational points JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2015 SP - 1 EP - 46 VL - 134 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_2015__134__1_0/ LA - en ID - RSMUP_2015__134__1_0 ER -
%0 Journal Article %A Lazda, Christopher %T Relative fundamental groups and rational points %J Rendiconti del Seminario Matematico della Università di Padova %D 2015 %P 1-46 %V 134 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_2015__134__1_0/ %G en %F RSMUP_2015__134__1_0
Lazda, Christopher. Relative fundamental groups and rational points. Rendiconti del Seminario Matematico della Università di Padova, Volume 134 (2015), pp. 1-46. http://archive.numdam.org/item/RSMUP_2015__134__1_0/
[1] Explicit calculation of Frobenius isomorphisms and Poincaré duality in the theory of arithmetic -modules, preprint (2011), arXiv:math/1105.5796. | Numdam | MR | Zbl
,[2] Cohomologie rigide et cohomologie rigide à supports propres, première partie, preprint (1996).
,[3] -modules arithmétique I. Opérateurs différentiels de niveau fini, Ann. scient. Éc. Norm. Sup. 29 (1996), 185–272. | Numdam | MR | Zbl
,[4] -modules arithmétique II. Descente par Frobenius, Mémoires de la SMF (2000), no. 81. | Numdam | Zbl
,[5] Introduction à la théorie arithmétique des -modules, Cohomologies -adiques et applications arithmétiques, II, no. 279, Astérisque, 2002, pp. 1–80. | Numdam | MR | Zbl
,[6] -modules arithmétiques surcohérents. Applications aux fonctions L, Ann. Inst. Fourier, Grenoble 54 (2004), no. 6, 1943–1996. | Numdam | MR | Zbl
,[7] Dévissages des -complexes de -modules arithmétiques en -isocristaux surconvergents, Inventiones math. 166 (2006), 397–456. | MR | Zbl
,[8] -isocristaux surconvergents et surcohérence differentielle, Inventiones math. 170 (2007), 507–539. | MR | Zbl
,[9] -modules arithmétiques surholonomes, Ann. scient. Éc. Norm. Sup. 42 (2009), no. 1, 141–192. | Numdam | MR | Zbl
,[10] Stabilité par produit tensoriel de la surholonomie, preprint (2012), arXiv: math/0605.125v5.
,[11] Pleine fidélité sans structure de Frobenius et isocristaux partiellement surconvergents, Math. Ann. 349 (2011), no. 4, 747–805. | MR | Zbl
,[12] Sur la préservation de la surconvergence par l’image directe d’un morphisms propre et lisse, preprint (2012), arXiv:math/0811.4740v3. | MR
,[13] Overholonomicity of overconvergent -isocrystals over smooth varieties, Ann. of Math. 176 (2012), no. 2, 747–813. | MR | Zbl
– ,[14] Sur les points rationnels des courbes algébriques de genre supérieur à l’unité, C. R. Acad. Sci. Paris 212 (1941), 882–885. | JFM | MR
,[15] Weights in rigid cohomology applications to unipotent F-isocrystals, Ann. scient. Éc. Norm. Sup. 31 (1998), 683–715. | Numdam | MR | Zbl
,[16] F-isocristaux unipotents, Compositio Math. 116 (1999), 81–110. | MR | Zbl
and ,[17] Pentes en cohomologie rigide et -isocristaux unipotents, Manuscripta Math. 100 (1999), 455–468. | MR | Zbl
and ,[18] Equations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, vol. 168, Springer-Verlag, New York, 1970. | MR | Zbl
,[19] Le groupe fondamental de la droite projective moins trois points 1989, pp. 79–297. | MR | Zbl
,[20] Catégories tannakiennes, The Grothendieck Festschrift, Vol. II, Progress in Mathematics, vol. 87, Birkhäuser, 1990. | MR | Zbl
,[21] Dwork cohomology and algebraic D-modules, Math. Ann. 318 (2000), no. 1, 107–125. | MR | Zbl
– – – ,[22] On Nori’s fundamental group scheme, Geometry and Dynamics of Groups and Spaces, Progress in Mathematics, vol. 265, Birkhäuser, 2007, pp. 377–398. | MR | Zbl
– – ,[23] Algebraic D-modules, Perspectives in Mathematics, vol. 2, Academic Press Inc., 1987. | MR | Zbl
et al.,[24] Motivic fundamental groups and integral points, Ph.D. thesis, Universität Bonn, 2010. | MR | Zbl
,[25] Unipotent variations of mixed Hodge structure, Inventiones math. 88 (1987), 83–124. | MR | Zbl
– ,[26] On the de Rham cohomology of algebraic varieties, Publ. Math. I.H.E.S. 45 (1975), no. 1, 6–99. | Numdam | MR | Zbl
,[27] Nilpotent Connections and the Monodromy Theorem: Applications of a result of Turrittin, Publ. Math. I.H.E.S. 39 (1970), 175–232. | Numdam | MR | Zbl
,[28] The motivic fundamental group of and the theorem of Siegel, Inventiones math. 161 (2005), 629–656. | MR | Zbl
,[29] The unipotent Albanese map and Selmer varieties for curves, Publ. RIMS, Kyoto Univ. 45 (2009), 89–133. | MR | Zbl
,[30] Categories for the working mathematician, Graduate Texts in Mathematics, vol. 5, Springer, 1971. | MR | Zbl
,[31] Tannakian categories, Hodge Cycles, Motives and Shimura Varieties, Lecture Notes in Mathematics, vol. 900, Springer, 1981, pp. 101–228. | Zbl
and ,[32] Sur la connection de Gauss–Manin en homotopie rationelle, Ann. scient. Éc. Norm. Sup. 26 (1993), 99–148. | Numdam | MR | Zbl
,[33] Local Fields, Translated from the French by Marvin Jay Greenberg, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, 1979. | MR | Zbl
,[34] Finiteness of isomorphism classes of curves in positive characterisitc with prescribed fundamental groups, J. Algebraic Geom. 13 (2004), 675–724. | MR | Zbl
,[35] Realisations of polylogarithms, Lecture Notes in Mathematics, vol. 1650, Springer, 1997. | MR | Zbl
,