We survey two problems illustrating geometric-topological and Hamiltonian methods in fluid mechanics: energy relaxation of a magnetic field and conservation laws for ideal fluid motion. More details and results, as well as a guide to the literature on these topics can be found in [3].
@article{SEDP_2002-2003____A10_0, author = {Khesin, Boris}, title = {Geometry of fluid motion}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:10}, pages = {1--10}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2002-2003}, zbl = {1056.37096}, mrnumber = {2030705}, language = {en}, url = {http://archive.numdam.org/item/SEDP_2002-2003____A10_0/} }
TY - JOUR AU - Khesin, Boris TI - Geometry of fluid motion JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:10 PY - 2002-2003 SP - 1 EP - 10 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://archive.numdam.org/item/SEDP_2002-2003____A10_0/ LA - en ID - SEDP_2002-2003____A10_0 ER -
%0 Journal Article %A Khesin, Boris %T Geometry of fluid motion %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:10 %D 2002-2003 %P 1-10 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://archive.numdam.org/item/SEDP_2002-2003____A10_0/ %G en %F SEDP_2002-2003____A10_0
Khesin, Boris. Geometry of fluid motion. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2002-2003), Talk no. 10, 10 p. http://archive.numdam.org/item/SEDP_2002-2003____A10_0/
[1] Arnold, V.I. (1966) Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16, 316–361. | Numdam | Zbl
[2] Arnold, V.I. (1973) The asymptotic Hopf invariant and its applications. Proc. Summer School in Diff. Equations at Dilizhan, Erevan (in Russian); English transl.: Sel. Math. Sov. 5 (1986), 327–345. | MR | Zbl
[3] Arnold, V.I. & Khesin, B.A. (1998) Topological methods in hydrodynamics. Applied Mathematical Sciences, vol. 125, Springer-Verlag, New York, pp. xv+374. | MR | Zbl
[4] Khesin, B.A. & Chekanov, Yu.V. (1989) Invariants of the Euler equation for ideal or barotropic hydrodynamics and superconductivity in dimensions. Physica D 40:1, 119–131. | MR | Zbl
[5] Freedman, M.H. (1999) Zeldovich’s neutron star and the prediction of magnetic froth. Proceedings of the Arnoldfest, Fields Institute Communications 24 (ed. E.Bierstone, et al.), pp. 165–172. | Zbl
[6] Freedman, M.H. & He, Z.-X. (1991) Divergence-free fields: energy and asymptotic crossing number. Annals of Math. 134:1, 189–229. | MR | Zbl
[7] Khesin, B. & Misiołek, G. (2002) Euler equations on homogeneous spaces and Virasoro orbits. Preprint arXiv: math.SG/0210397, to appear Adv. Math., 26pp.
[8] Moffatt, H.K. (1969) The degree of knottedness of tangled vortex lines. J. Fluid. Mech. 35, 117–129. | Zbl
[9] Moffatt, H.K. & Tsinober, A. (1992) Helicity in laminar and turbulent flow. Annual Review of Fluid Mechanics 24, 281–312. | MR | Zbl
[10] Ovsienko, V.Yu. & Khesin, B.A. (1987) Korteweg-de Vries super-equation as an Euler equation. Funct. Anal. Appl. 21:4, 329–331. | MR | Zbl
[11] Serre, D. (1984) Invariants et dégénérescence symplectique de l’équation d’Euler des fluids parfaits incompressibles. C.R. Acad. Sci. Paris, Sér. A 298:14, 349–352; also personal communication of L. Tartar. | Zbl
[12] Vogel, T. (2000) On the asymptotic linking number. Preprint arXiv: math.DS/0011159, to appear in Proc. AMS, 9pp. | MR | Zbl