@article{SEDP_2003-2004____A13_0, author = {Ammari, Habib and Kang, Hyeonbae}, title = {Sur le {Probl\`eme} de {Conductivit\'e} {Inverse}}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:13}, pages = {1--15}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2003-2004}, mrnumber = {2117045}, language = {fr}, url = {http://archive.numdam.org/item/SEDP_2003-2004____A13_0/} }
TY - JOUR AU - Ammari, Habib AU - Kang, Hyeonbae TI - Sur le Problème de Conductivité Inverse JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:13 PY - 2003-2004 SP - 1 EP - 15 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://archive.numdam.org/item/SEDP_2003-2004____A13_0/ LA - fr ID - SEDP_2003-2004____A13_0 ER -
%0 Journal Article %A Ammari, Habib %A Kang, Hyeonbae %T Sur le Problème de Conductivité Inverse %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:13 %D 2003-2004 %P 1-15 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://archive.numdam.org/item/SEDP_2003-2004____A13_0/ %G fr %F SEDP_2003-2004____A13_0
Ammari, Habib; Kang, Hyeonbae. Sur le Problème de Conductivité Inverse. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2003-2004), Exposé no. 13, 15 p. http://archive.numdam.org/item/SEDP_2003-2004____A13_0/
[1] Alessandrini G., Stable determination of conductivity by boundary measurements, Applicable Analysis 27 (1988) pp. 153–172. | MR | Zbl
[2] Ammari H., Iakovleva E. et Moskow S., Recovery of small inhomogeneities from the scattering amplitude at a fixed frequency, SIAM J. Math. Anal. 34 (2003), 882–900. | MR | Zbl
[3] Ammari H. et Kang H., Reconstruction of Small Inclusions from Boundary Measurements, Lecture Notes in Mathematics, Springer-Verlag, à paraître (2004).
[4] Ammari H. et Kang H., High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter, SIAM J. Math. Anal. 34 (2003), 1152–1166. | MR | Zbl
[5] —————, Properties of the generalized polarization tensors, Multiscale Modeling and Simulation : A SIAM Interdisciplinary Journal 1 (2003), 335–348. | MR | Zbl
[6] Ammari H., Kang H., Kim E. et Lim M., Reconstruction of closely spaced small inclusions, à paraître dans SIAM Journal on Numerical Analysis (2004). | Zbl
[7] Ammari H., Kang H., Nakamura G. et Tanuma K., Complete asymptotic expansions of solutions of the system of elastostatics in the presence of inhomogeneities of small diameter, J. Elasticity 67 (2002), 97–129. | MR | Zbl
[8] Ammari H., Kang H. et Touibi K., Boundary layer techniques for deriving the effective properties of composite materials, à paraître dans Asympt. Anal. (2004). | Zbl
[9] Ammari H. et Khelifi A., Electromagnetic scattering from small dielectric inhomogeneities, J. Math. Pures Appl. 82 (2003), 749–842. | MR | Zbl
[10] Ammari H., Kwon O., Seo J.K. et Woo E.J., T-scan electrical impedance imaging system for anomaly detection, à paraître dans SIAM J. Appl. Math. (2004). | MR | Zbl
[11] Ammari H., Moskow S. et Vogelius M., Boundary integral formulas for the reconstruction of electromagnetic imperfections of small diameter, ESAIM : Cont. Opt. Calc. Var. 9 (2003) pp. 49–66. | Numdam | MR | Zbl
[12] Ammari H. et Seo J.K., A new algorithm for the reconstruction of conductivity inhomogeneities, Adv. Appl. Math. 30 (2003), 679–705. | MR | Zbl
[13] Ammari H. et Uhlmann G., Reconstruction of the potential from partial Cauchy data for the Schrödinger equation, Indiana Univ. Math. J. 53 (2004), 169–183. | MR | Zbl
[14] Ammari H., Vogelius M. et Volkov D., Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of imperfections of small diameter II. The full Maxwell equations, J. Math. Pures Appl. 80 (2001) pp. 769–814. | MR | Zbl
[15] Ammari H. et Volkov D., Correction of order three for the expansion of two dimensional electromagnetic fields perturbed by the presence of inhomogeneities of small diameter, J. Comput. Physics 189 (2003), 371–389. | MR | Zbl
[16] Beretta E., Francini E. et Vogelius M., Asymptotic formulas for steady state voltage potentials in the presence of thin inhomogeneities. A rigorous error analysis, J. Math. Pures Appl. 82 (2003), 1277–1301. | MR | Zbl
[17] Beretta E., Mukherjee A. et Vogelius M., Asymptotic formuli for steady state voltage potentials in the presence of conductivity imperfections of small area, Zeitschrift für Angewandte Mathematik und Physik. 52 (2001) pp. 543–572. | MR | Zbl
[18] Borcea L., Berrymann J.G. et Papanicolaou G.C., High contrast impedance tomography, Inverse Problems 12 (1996) pp. 1–24. | MR | Zbl
[19] Brühl M., Hanke M., et Vogelius M., A direct impedance tomography algorithm for locating small inhomogeneities, Numer. Math. 93 (2003), 635–654. | MR | Zbl
[20] Calderón A.P., On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matemática, Rio de Janeiro (1980), 65-73. | MR
[21] Capdeboscq Y. et Vogelius M., A general representation formula for the boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction, Math. Modelling Num. Anal. 37 (2003), 159–173. | Numdam | MR | Zbl
[22] —————, Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements, Math. Modelling Num. Anal. 37 (2003), 227–240. | Numdam | MR | Zbl
[23] Cedio-Fengya D.-J., Moskow S. et Vogelius M., Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction. Inverse Problems, 14 (1998) pp. 553–595. | MR | Zbl
[24] Cheney M., Isaacson D., Newell J., Simske S. et Goble J., Noser : an algorithm for solving the inverse conductivity problem, Int. J. Imaging Syst. and Technol. 22 (1990) pp. 66–75.
[25] Coifman R.R., McIntosh A. et Meyer Y., L’intégrale de Cauchy définit un opérateur bourné sur pour courbes Lipschitziennes, Ann. of Math. 116 (1982) pp. 361–387. | Zbl
[26] Daubechies I., Ten Lectures on Wavelets, SIAM, Philadelphia, 1992. | MR | Zbl
[27] Dahlberg B.E., Kenig C.E. et Verchota G., Boundary value problem for the systems of elastostatics in Lipschitz domains, Duke Math. J. 57 (1988) pp. 795–818. | MR | Zbl
[28] Escauriaza L., Fabes E. et Verchota G., On a regularity thoerem for weak solutions to transmission problems with internal Lipschitz boundaries, Proceedings of AMS 115 (1992) pp. 1069–1076. | MR | Zbl
[29] Escauriaza L. et Seo J.K., Regularity properties of solutions to transmission problems, Trans. Amer. Math. Soc. 338 (1993) pp. 405–430. | MR | Zbl
[30] Fabes E.B., Kang H. et Seo J.K., Inverse conductivity problem : error estimates and approximate identification for perturbed disks, SIAM J. of Math. Anal. 30 (1999) pp. 699–720. | MR | Zbl
[31] Friedman A. et Vogelius M., Identification of small inhomogeneities of extreme conductivity by boundary measurements : a theorem on continuous dependence, Arch. Rat. Mech. Anal. 105 ( 1989) pp. 299–326. | MR | Zbl
[32] Kang H., Kim E. et Lee J., Identification of elastic inclusions and elastic moment tensors by boundary measurements, Inverse Problems 19 (2003), 703–724. | MR | Zbl
[33] Kang H., Kim E. et Kim K., Anistropic polarization tensors and determination of an anisotropic inclusion, SIAM J. Appl. Math. 65 (2003), 1276–1291. | MR | Zbl
[34] Kang H. et Seo J.K., Layer potential technique for the inverse conductivity problem, Inverse Problems 12 ( 1996) pp. 267–278. | MR | Zbl
[35] —————, Inverse conductivity problem with one measurement : uniqueness for balls in , SIAM J. Appl. Math. 59 (1999) pp. 1533–1539. | MR | Zbl
[36] Kang H., Seo J. K. et Sheen D., The inverse conductivity problem with one measurement : Stability and estimation of size, SIAM J. Math. Anal. 28 (1997) pp. 1389–1405. | MR | Zbl
[37] Kleinman R.E. et Senior T.B.A., Rayleigh scattering in Low and High Frequency Asymptotics, edited by V.K. Varadan and V.V. Varadan, North-Holland (1986) pp. 1–70. | MR
[38] Kohn R. et Vogelius M., Determining conductivity by boundary measurements. Comm. Pure Appl. Math. 37 (1984) pp. 289–298. II. Interior results, Comm. Pure Appl. Math. 38 (1985) pp. 643–667. | MR | Zbl
[39] Kozlov S.M., On the domain of variation of added masses, polarization and effective characteristics of composites, J. Appl. Maths Mechs 56 (1992), 102–107. | MR | Zbl
[40] Kwon O. et Seo J.K., Total size estimation and identification of multiple anomalies in the inverse electrical impedance tomography, Inverse Problems 17 (2001) pp. 59–75. | MR | Zbl
[41] Kwon O., Seo J.K., et Yoon J.R., A real-time algorithm for the location search of discontinuous conductivities with one measurement, Commun. Pure Appl. Math. 55 (2002) pp. 1–29. | MR | Zbl
[42] Maz’ya V.G. et Nazarov S.A., The asymptotic behavior of energy integrals under small perturbations of the boundary near corner points and conical points, Trans. Moscow Math. Soc. (1988) pp. 77–127. | Zbl
[43] Movchan A.B. et Serkov S.K., The Pólya-Szegö matrices in asymptotic models of dilute composite, Euro. J. Appl. Math. 8 (1997) pp. 595–621. | MR | Zbl
[44] Nachman A., Global uniqueness for a two-dimensional inverse boundary value problem, Annals of Math. 143 (1996) pp. 71–96. | MR | Zbl
[45] Pólya G. et Szegö G., Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematical Studies Number 27, Princeton University Press, Princeton 1951. | MR | Zbl
[46] Santosa F. et Vogelius M., A backprojection algorithm for electrical impedance imaging, SIAM J. Appl. Math. 50 (1990) pp. 216–243. | MR | Zbl
[47] Schiffer M., Sur la polarisation et la masse virtuelle, C. R. Acad. Sci. Paris 244 (1957), 3118–3121. | MR | Zbl
[48] Schiffer M. et Szegö G., Virtual mass and polarization, Trans. Amer. Math. Soc. 67 (1949) pp. 130–205. | MR | Zbl
[49] Seo J.K., Kwon O., Ammari H. et Woo E.J., Mathematical framework and anomaly estimation algorithm for breast cancer detection using TS2000 configuration, à paraître dans IEEE Trans. Biomedical Engineering (2004).
[50] Sylvester J. et Uhlmann G., A global uniqueness theorem for an inverse boundary value problem, Annals of Math. 125 (1987) pp. 153–169. | MR | Zbl
[51] Verchota G., Layer potentials and boundary value problems for Laplace’s equation in Lipschitz domains, J. Func. Anal. 59 ( 1984) pp. 572–611. | Zbl
[52] Vogelius M. et Volkov D., Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter, Math. Modelling Num. Anal. 34 (2000) pp. 723–748. | Numdam | MR | Zbl