We consider the problem of minimizing ∫ 0 ℓ ξ 2 + K 2 ( s ) d s for a planar curve having fixed initial and final positions and directions. The total length ℓ is free. Here s is the arclength parameter, K(s) is the curvature of the curve and ξ > 0 is a fixed constant. This problem comes from a model of geometry of vision due to Petitot, Citti and Sarti. We study existence of local and global minimizers for this problem. We prove that if for a certain choice of boundary conditions there is no global minimizer, then there is neither a local minimizer nor a geodesic. We finally give properties of the set of boundary conditions for which there exists a solution to the problem.
Keywords: curve reconstruction, generalized pontryagin maximum principle
@article{COCV_2014__20_3_748_0, author = {Boscain, Ugo and Duits, Remco and Rossi, Francesco and Sachkov, Yuri}, title = {Curve cuspless reconstruction \protect\emph{via }sub-riemannian geometry}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {748--770}, publisher = {EDP-Sciences}, volume = {20}, number = {3}, year = {2014}, doi = {10.1051/cocv/2013082}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2013082/} }
TY - JOUR AU - Boscain, Ugo AU - Duits, Remco AU - Rossi, Francesco AU - Sachkov, Yuri TI - Curve cuspless reconstruction via sub-riemannian geometry JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2014 SP - 748 EP - 770 VL - 20 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2013082/ DO - 10.1051/cocv/2013082 LA - en ID - COCV_2014__20_3_748_0 ER -
%0 Journal Article %A Boscain, Ugo %A Duits, Remco %A Rossi, Francesco %A Sachkov, Yuri %T Curve cuspless reconstruction via sub-riemannian geometry %J ESAIM: Control, Optimisation and Calculus of Variations %D 2014 %P 748-770 %V 20 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2013082/ %R 10.1051/cocv/2013082 %G en %F COCV_2014__20_3_748_0
Boscain, Ugo; Duits, Remco; Rossi, Francesco; Sachkov, Yuri. Curve cuspless reconstruction via sub-riemannian geometry. ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 3, pp. 748-770. doi : 10.1051/cocv/2013082. http://archive.numdam.org/articles/10.1051/cocv/2013082/
[1] Compactness for sub-Riemannian length-minimizers and subanalyticity. Rend. Sem. Mat. Univ. Politec. Torino 56 (2001) 1-12. | MR | Zbl
,[2] Exponential mappings for contact sub-Riemannian structures. J. Dynam. Control Syst. 2 (1996) 321-358. | MR | Zbl
,[3] Introduction to Riemannian and Sub-Riemannian geometry, available at http://www.math.jussieu.fr/˜barilari/Notes.php
, and ,[4] Control Theory from the Geometric Viewpoint. Encyclopedia of Math. Sci., vol. 87. Springer (2004). | MR | Zbl
, ,[5] The tangent space in sub-Riemannian geometry. Sub-Riemannian Geometry, Progr. Math., vol. 144. Edited by A. Bellaiche and J.-J. Risler. Birkhäuser, Basel (1996) 1-78. | MR | Zbl
,[6] Existence planar curves minimizing length and curvature. Proc. Steklov Institute Math. 270 (2010) 43-56. | MR | Zbl
, and ,[7] Hypoelliptic diffusion and human vision: a semi-discrete new twist on the Petitot theory. To appear in SIAM J. Imaging Sci. | MR
, , and ,[8] Anthropomorphic Image Reconstruction via Hypoelliptic Diffusion. SIAM J. Control Opt. 50 1309-1336. | MR | Zbl
, , and ,[9] Projective Reeds-Shepp car on S2 with quadratic cost. ESAIM: COCV 16 (2010) 275-297. | Numdam | MR | Zbl
and ,[10] A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vision 24 (2006) 307-326. | MR | Zbl
and ,[11] Association fields via cuspless sub-Riemannian geodesics in SE(2). To appear in J. Math. Imaging Vision. | MR | Zbl
, , and ,[12] Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores, Part I: Linear Left-Invariant Diffusion Equations on SE(2). Quart. Appl. Math. 68 (2010) 293-331. | MR | Zbl
and ,[13] Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores, Part II: nonlinear left-invariant diffusions on invertible orientation scores. Quart. Appl. Math. 68 (2010) 255-292. | MR | Zbl
and ,[14] Carnot-Caratheodory spaces seen from within, in Sub-Riemannian Geometry, in vol. 144 Progr. Math., edited by A. Bellaiche and J.-J. Risler (1996) 79-323. | MR | Zbl
,[15] Minimal Surfaces in the Roto-Translation Group with Applications to a Neuro-Biological Image Completion Model. J Math Imaging Vis 36 (2010) 1-27. | MR
and ,[16] The visual cortex is a contact bundle. Appl. Math. Comput. 32 (1989) 137-167. | MR | Zbl
,[17] Hypoelliptic Second Order Differential Equations. Acta Math. 119 (1967) 147-171. | MR | Zbl
,[18] Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The J. Phys. 160 (1962) 106.
and ,[19] Maxwell strata in sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV 16 (2010) 380-399. | Numdam | MR | Zbl
and ,[20] A Tour of Subriemannian Geometries, Their Geodesics and Applications. Vol. 91 of Math. Surveys and Monogr. AMS (2002). | MR | Zbl
,[21] The 2.1-D sketch. ICCV (1990) 138-144.
and ,[22] Vers une Neuro-géomètrie. Fibrations corticales, structures de contact et contours subjectifs modaux. Math. Inform. Sci. Humaines 145 (1999) 5-101.
,[23] Neurogéomètrie de la vision - Modèles mathématiques et physiques des architectures fonctionnelles. Les Éditions de l'École Polytechnique (2008). | MR
,[24] The neurogeometry of pinwheels as a sub-Riemannian contact structure. J. Phys. - Paris 97 (2003) 265-309.
,[25] Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV 16 (2010) 1018-1039. | Numdam | MR | Zbl
,[26] Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV 17 (2011) 293-321. | Numdam | MR | Zbl
,[27] Discrete symmetries in the generalized Dido problem. Sb. Math. 197 (2006) 235-257. | MR | Zbl
,[28] Image completion using a diffusion driven mean curvature flow in a sub-riemannian space, in Int. Conf. Comput. Vision Theory and Appl. (VISAPP'08), Funchal (2008) 22-25.
, and ,[29] First and Second-Order Integral Functionals of the Calculus of Variations Which Exhibit the Lavrentiev Phenomenon. J. Dyn. Control Syst. 3 (1997) 565-588. | MR | Zbl
,[30] Optimal Control. Birkhauser (2010). | MR
,[31] A Course of Modern Analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of principal transcendental functions. Cambridge University Press, Cambridge (1996). | MR | Zbl
and ,Cited by Sources: