Commutators associated to a subfactor and its relative commutants
[Commutateurs associés à un sous-facteur et à ses commutants relatifs]
Annales de l'Institut Fourier, Tome 52 (2002) no. 1, pp. 289-301.

Soit NM une inclusion de facteurs de type II 1 ayant un indice de Jones fini. Alors on a l’égalité M=(N ' M)[N,M] en tant qu’espaces vectoriels. Ici [N,M] désigne l’espace vectoriel engendré par les commutateurs de la forme [a,b]aN,bM.

Let NM be an inclusion of II 1 factors with finite Jones index. Then M=(N ' M)[N,M] as a vector space. Here [N,M] denotes the vector space spanned by the commutators of the form [a,b] where aN,bM.

DOI : https://doi.org/10.5802/aif.1887
Classification : 46L37,  47B47
Mots clés : commutateur, attente conditionnelle, commutant relatif
@article{AIF_2002__52_1_289_0,
     author = {Huang, Hsiang-Ping},
     title = {Commutators associated to a subfactor and its relative commutants},
     journal = {Annales de l'Institut Fourier},
     pages = {289--301},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {52},
     number = {1},
     year = {2002},
     doi = {10.5802/aif.1887},
     zbl = {1021.46045},
     mrnumber = {1881581},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.1887/}
}
TY  - JOUR
AU  - Huang, Hsiang-Ping
TI  - Commutators associated to a subfactor and its relative commutants
JO  - Annales de l'Institut Fourier
PY  - 2002
DA  - 2002///
SP  - 289
EP  - 301
VL  - 52
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.1887/
UR  - https://zbmath.org/?q=an%3A1021.46045
UR  - https://www.ams.org/mathscinet-getitem?mr=1881581
UR  - https://doi.org/10.5802/aif.1887
DO  - 10.5802/aif.1887
LA  - en
ID  - AIF_2002__52_1_289_0
ER  - 
Huang, Hsiang-Ping. Commutators associated to a subfactor and its relative commutants. Annales de l'Institut Fourier, Tome 52 (2002) no. 1, pp. 289-301. doi : 10.5802/aif.1887. http://archive.numdam.org/articles/10.5802/aif.1887/

[1] D. Bisch Bimodules, higher relative commutants and the fusion algebra associated to a subfactor, Operator algebras and their applications (Waterloo, ON, 1994/1995) (Fields Inst. Commun.), Volume 13 (1997), pp. 13-63 | Zbl 0894.46046

[2] M. Choda Entropy for canonical shifts, Trans. AMS, Volume 334 (1992) no. 2, pp. 827-849 | Article | MR 1070349 | Zbl 0773.46032

[3] D.E. Evans; Y. Kawahigashi Quantum symmetries on operator algebras, Oxford University Press, Oxford, 1998 | MR 1642584 | Zbl 0924.46054

[4] Th. Fack; P. de la Harpe Sommes de commutateurs dans les algèbres de von Neumann finies continues, Ann. Inst. Fourier, Grenoble, Volume 30 (1980) no. 3, pp. 49-73 | Article | Numdam | MR 597017 | Zbl 0425.46046

[5] V.F.R. Jones Index for subrings of rings, Group actions on rings (Brunswick, Maine, 1984) (Contemp. Math.), Volume 43 (1985), pp. 181-190 | Zbl 0607.46033

[6] V.F.R. Jones Planar algebras, I (1999) (preprint)

[7] S. Popa On a problem of R.V. Kadison on maximal abelian *-subalgebras in factors, Invent. Math., Volume 65 (1981), pp. 269-281 | Article | MR 641131 | Zbl 0481.46028

[8] S. Popa An axiomatization of the lattice of higher relative commutants of a subfactor, Invent. Math., Volume 120 (1995), pp. 427-445 | Article | MR 1334479 | Zbl 0831.46069

[9] S. Popa The relative Dixmier property for inclusions of von Neumann algebras of finite index, Ann. Sci. École Norm. Sup. (4), Volume 32 (1999) no. 6, pp. 743-767 | Numdam | MR 1717575 | Zbl 0966.46036

[10] S. Popa On the relative Dixmier property for inclusions of C*-algebras, J. Funct. Anal., Volume 171 (2000) no. 1, pp. 139-154 | Article | MR 1742862 | Zbl 0953.46027

[11] M. Takesaki Conditional expectations in von Neumann algebras, J. Func. Anal., Volume 9 (1972), pp. 306-321 | Article | MR 303307 | Zbl 0245.46089

Cité par Sources :