Sous les hypothèses standard de l’axiomatique Brelot, étude de classes de fonctions harmoniques complexes définies comme les classes de Hardy classiques. Caractérisation comme solutions de problèmes de Dirichlet avec la frontière minimale, les filtres fins, et données-frontière dans , pour , comme intégrales de mesures complexes finies sur la frontière minimale, pour . Existence presque-partout à la frontière minimale d’une limite fine finie . Application à deux théorèmes du type F. et M. Riesz et Phragmen-Lindelöf pour fonctions positives “fortement sous harmoniques”, et à la classification des espaces harmoniques.
@article{AIF_1967__17_2_425_0, author = {Lumer-Na{\"\i}m, Linda}, title = {${\mathcal {H}}^p$-spaces of harmonic functions}, journal = {Annales de l'Institut Fourier}, pages = {425--469}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {17}, number = {2}, year = {1967}, doi = {10.5802/aif.276}, mrnumber = {37 #1642}, zbl = {0153.43102}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.276/} }
TY - JOUR AU - Lumer-Naïm, Linda TI - ${\mathcal {H}}^p$-spaces of harmonic functions JO - Annales de l'Institut Fourier PY - 1967 SP - 425 EP - 469 VL - 17 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.276/ DO - 10.5802/aif.276 LA - en ID - AIF_1967__17_2_425_0 ER -
Lumer-Naïm, Linda. ${\mathcal {H}}^p$-spaces of harmonic functions. Annales de l'Institut Fourier, Tome 17 (1967) no. 2, pp. 425-469. doi : 10.5802/aif.276. http://archive.numdam.org/articles/10.5802/aif.276/
[1] Axiomatische Behandlung des Dirichletschen Problems fur elliptische und parabolische Differential gleichungen, Math. Ann., 146 (1962), 1-59. | EuDML | MR | Zbl
,[2] Lectures on potential theory, Tata Institute of Fundamental Research, 19 (1960). | MR | Zbl
,[3] Intégrabilité uniforme. Quelques applications à la théorie du potentiel, Séminaire théorie du Potentiel, Paris, 6 (1961-1962). | EuDML | Numdam | Zbl
,[4] Axiomatique des fonctions harmoniques, Séminaire Mathématiques Supérieures, Université de Montréal, Eté 1965. | Zbl
,[5] Probability methods applied to the first boundary value problem, Third Berkeley Symp. on Math. Statistics and Probability, 2 (1954-1955), 49-80. | MR | Zbl
,[6] Conditional Brownian motion and the boundary limits of harmonic functions, Bull. Soc. Math. de France, 85 (1957), 431-458. | EuDML | Numdam | MR | Zbl
,[7] A non probabilistic proof of the relative Fatou theorem, Ann. Inst. Fourier, 9 (1959), 295-299. | EuDML | Numdam | MR | Zbl
,[8] Boundary properties of functions with finite Dirichlet integral, Ann. Inst. Fourier, 12 (1962), 573-621. | EuDML | Numdam | MR | Zbl
,[9] Some classical function theory theorems and their modern versions, Colloque de Potentiel, Paris-Orsay, 1964, and Ann. Inst. Fourier, 15. 1 (1965), 113-136. | EuDML | Numdam | MR | Zbl
,[10] Strongly subharmonic functions, Math. scand., 15 (1964), 93-96. | Zbl
and ,[11] Extreme harmonic functions and boundary value problems, Ann. Inst. Fourier, 13, 2 (1963), 307-356. | Numdam | MR | Zbl
,[12] Fatou-Naim-Doob limit theorems in the axiomatic system of Brelot, Ann. Inst. Fourier, 16, 2 (1967). | Numdam | MR | Zbl
,[13] Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier, 12 (1962), 415-571. | Numdam | MR | Zbl
,[14] Banach spaces of analytic functions, Prentice-Hall (1962). | Zbl
,[15] An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier, 16, 2 (1967). | Numdam | Zbl
,[16] The equivalence of Harnack's principle and Harnack's inequality in the axiomatic system of Brelot, Ann. Inst. Fourier, 15, 2 (1965), 597-600. | Numdam | MR | Zbl
and ,[17] Decomposition of functions and the classification of spaces in axiomatic potential theory, Notices AMS, January 1966, 146.
and ,[18] Harmonic product and harmonic boundary for bounded complex-valued harmonic functions, Notices AMS, april 1965, 355.
,[19] Hp spaces of harmonic functions, Notices AMS, June 1966, 481.
,[20] Banach function spaces, Thesis, Van Gorcum, Assen, Netherlands. | Zbl
,[21] Minimal positive harmonic functions, Trans. Amer. Math. Soc., 49 (1941), 137-172. | JFM | MR | Zbl
,[22] Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. Fourier, 3 (1951), 103-197. | Numdam | MR | Zbl
,[23] On the theory of harmonic functions of several variables, I, Acta Math., 103 (1960), 25-62. | MR | Zbl
and ,Cité par Sources :