The density of primes dividing at least one term of the Lucas sequence , defined by and for , with an arbitrary integer, is determined.
On donne la densité des nombres premiers qui divisent au moins un terme de la suite de Lucas , définie par et pour , avec entier arbitraire.
@article{JTNB_1996__8_2_449_0, author = {Moree, Pieter}, title = {On the prime density of {Lucas} sequences}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {449--459}, publisher = {Universit\'e Bordeaux I}, volume = {8}, number = {2}, year = {1996}, mrnumber = {1438482}, zbl = {0873.11058}, language = {en}, url = {http://archive.numdam.org/item/JTNB_1996__8_2_449_0/} }
Moree, Pieter. On the prime density of Lucas sequences. Journal de théorie des nombres de Bordeaux, Volume 8 (1996) no. 2, pp. 449-459. http://archive.numdam.org/item/JTNB_1996__8_2_449_0/
[1] Density of prime divisors of linear recurrences, Mem. of the Amer. Math. Soc. 551, 1995. | MR | Zbl
,[2] Arithmetische Theorie der Normalkörper von 2-Potenzgrad mit Diedergruppe, J. Number Theory 3 (1971), 412-443. | MR | Zbl
,[3] Uber die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl a ≠ 0 von gerader bzw., ungerader Ordnung mod. p ist, Math. Ann. 166 (1966), 19-23. | MR | Zbl
,[4] The set of primes dividing the Lucas numbers has density 2/3, Pacific J. Math. 118 (1985), 449-461 (Errata, Pacific J. Math. 162 (1994), 393-397). | MR | Zbl
,[5] Counting divisors of Lucas numbers, MPI-preprint, no. 34, Bonn, 1996. | MR
,[6] A conjecture of Krishnamurty on decimal periods and some allied problems, J. Number Theory 13 (1981), 303-319. | MR | Zbl
,[7] The book of prime number records, Springer-Verlag, Berlin etc., 1988. | MR | Zbl
,[8] Catalan's conjecture, Academic Press, Boston etc., 1994. | MR | Zbl
,[9] The number of real quadratic fields having units of negative norm, Experimental Mathematics 2 (1993), 121-136. | MR | Zbl
,[10] On the density of some sets of primes. IV, Acta Arith. 43 (1984), 177-190. | MR | Zbl
,