A Ritz method based on a complementary variational principle
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 10 (1976) no. R2, p. 39-48
@article{M2AN_1976__10_2_39_0,
     author = {Falk, Richard S.},
     title = {A Ritz method based on a complementary variational principle},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {10},
     number = {R2},
     year = {1976},
     pages = {39-48},
     zbl = {0363.65084},
     mrnumber = {433915},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1976__10_2_39_0}
}
Falk, Richard S. A Ritz method based on a complementary variational principle. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 10 (1976) no. R2, pp. 39-48. http://www.numdam.org/item/M2AN_1976__10_2_39_0/

1. A. M. Arthurs, Complementary Variational Principles, , Clarendon Press, Oxford, 1970. | MR 594935 | Zbl 0202.38404

2. I. Babuska, Approximation by Hill Functions, Commentations Math. Univ. Carolinae, Vol. 11, 1970, p. 387-811. | MR 292309 | Zbl 0215.46404

3. I. Babuska, Approximation by Hill Functions, II, Technical Note BN-708, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, 1971.

4. I. Babuska, The Finite Element Method with Lagrangian Multipliers, Numer. Math. 20, 1973, p. 179-192. | MR 359352 | Zbl 0258.65108

5. I. Babuska, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz (editor), Academic Press, New York, 1972. | MR 347104 | Zbl 0259.00014

6. J. L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1, Paris, Dunod, 1968. | MR 247243 | Zbl 0165.10801

7. G. Strang and G. Fix, An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, N.J., 1973. | MR 443377 | Zbl 0356.65096