Dynamical directions in numeration
[Dynamique de la numération]
Annales de l'Institut Fourier, Tome 56 (2006) no. 7, pp. 1987-2092.

Le but de ce survol est d’aborder définitions et propriétés concernant la numération d’un point de vue dynamique : nous nous concentrons sur les systèmes de numération, leur compactification, et les systèmes dynamiques qui peuvent être définis dessus. La notion de système de numération fibré unifie la présentation. De nombreux exemples sont étudiés. Plusieurs numérations sur les entiers naturels, relatifs, les nombres réels ou les nombres complexes sont présentées. Nous portons une attention spéciale à la β-numération ainsi qu’à ses généralisations, aux systèmes de numération abstraits, aux systèmes dits “shift radix”, de même qu’aux G-échelles et aux odomètres. Un paragraphe d’applications conclut ce survol.

This survey aims at giving a consistent presentation of numeration from a dynamical viewpoint: we focus on numeration systems, their associated compactification, and dynamical systems that can be naturally defined on them. The exposition is unified by the fibred numeration system concept. Many examples are discussed. Various numerations on rational integers, real or complex numbers are presented with special attention paid to β-numeration and its generalisations, abstract numeration systems and shift radix systems, as well as G-scales and odometers. A section of applications ends the paper.

DOI : 10.5802/aif.2233
Classification : 37B10, 11A63, 11J70, 11K55, 11R06, 37A45, 68Q45, 68R15
Keywords: Numeration, fibred systems, symbolic dynamics, odometers, numeration scales, subshifts, $f$-expansions, $\beta $-numeration, sum-of-digits function, abstract number systems, canonical numeration systems, shift radix systems, additive functions, tilings, Rauzy fractals, substitutive dynamical systems.
Mot clés : Numération, systèmes fibrés, dynamique symbolique, odomètres, échelles de numération, sous-shifts, $f$-développements, $\beta $-numération, fonction somme des chiffres, systèmes de numération abstraits, systèmes de numération canoniques, systèmes shift radix, fonctions additives, pavages, fractals de Rauzy, systèmes dynamiques substitutifs.
Barat, Guy 1 ; Berthé, Valérie 2 ; Liardet, Pierre 3 ; Thuswaldner, Jörg 4

1 Institut für Mathematik A T.U. Graz - Steyrergasse 30 8010 Graz (Austria)
2 Université Montpellier II LIRMM — CNRS UMR 5506 161 rue Ada 34392 Montpellier Cedex 5 (France)
3 Université de Provence CMI- 39 rue Joliot-Curie 13453 Marseille Cedex 13 (France)
4 Montan Universtät Leoben Chair of Mathematics and Statistics Franz-Josef-Straße 18 8700 Leoben (Austria)
@article{AIF_2006__56_7_1987_0,
     author = {Barat, Guy and Berth\'e, Val\'erie and Liardet, Pierre and Thuswaldner, J\"org},
     title = {Dynamical directions in numeration},
     journal = {Annales de l'Institut Fourier},
     pages = {1987--2092},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {56},
     number = {7},
     year = {2006},
     doi = {10.5802/aif.2233},
     zbl = {1138.37005},
     mrnumber = {2290774},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.2233/}
}
TY  - JOUR
AU  - Barat, Guy
AU  - Berthé, Valérie
AU  - Liardet, Pierre
AU  - Thuswaldner, Jörg
TI  - Dynamical directions in numeration
JO  - Annales de l'Institut Fourier
PY  - 2006
SP  - 1987
EP  - 2092
VL  - 56
IS  - 7
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.2233/
DO  - 10.5802/aif.2233
LA  - en
ID  - AIF_2006__56_7_1987_0
ER  - 
%0 Journal Article
%A Barat, Guy
%A Berthé, Valérie
%A Liardet, Pierre
%A Thuswaldner, Jörg
%T Dynamical directions in numeration
%J Annales de l'Institut Fourier
%D 2006
%P 1987-2092
%V 56
%N 7
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.2233/
%R 10.5802/aif.2233
%G en
%F AIF_2006__56_7_1987_0
Barat, Guy; Berthé, Valérie; Liardet, Pierre; Thuswaldner, Jörg. Dynamical directions in numeration. Annales de l'Institut Fourier, Tome 56 (2006) no. 7, pp. 1987-2092. doi : 10.5802/aif.2233. http://archive.numdam.org/articles/10.5802/aif.2233/

[1] Aaronson, J. Random f-expansions, Ann. Probab., Volume 14 (1986) no. 3, pp. 1037-1057 | DOI | MR | Zbl

[2] Aaronson, J. An Introduction to Infinite Ergodic Theory, Mathematical Surveys and Monographs, 50, Amer. Math. Soc., 1997 | MR | Zbl

[3] Adamczewski, B. Répartitions des suites (nα) n et substitutions, Acta Arith., Volume 112 (2004), pp. 1-22 | DOI | MR | Zbl

[4] Adamczewski, B.; Bugeaud, Y. On the complexity of algebraic numbers II. Continued fractions, Acta Math., Volume 195 (2005), pp. 1-20 | DOI | MR | Zbl

[5] Adamczewski, B.; Bugeaud, Y. On the decimal expansion of algebraic numbers, Fiz. Mat. Fak. Moksl. Semin. Darb., Volume 8 (2005), pp. 5-13 | MR | Zbl

[6] Adamczewski, B.; Bugeaud, Y. On the complexity of algebraic numbers I. Expansions in integer bases (2006) (to appear in Annals of Math.) | MR

[7] Akiyama, S. Pisot numbers and greedy algorithm, Number theory (Eger, 1996), de Gruyter, 1998, pp. 9-21 | MR | Zbl

[8] Akiyama, S.; Győry, K.; Kanemitsu, S. Self affine tilings and Pisot numeration systems, Number Theory and its Applications (Kyoto 1997), Kluwer Acad. Publ. (1999), pp. 7-17 | MR | Zbl

[9] Akiyama, S. Cubic Pisot units with finite beta expansions, Algebraic number theory and Diophantine analysis (Graz, 1998), de Gruyter, Berlin, 2000, pp. 11-26 | MR | Zbl

[10] Akiyama, S. On the boundary of self affine tilings generated by Pisot numbers, J. Math. Soc. Japan, Volume 54 (2002) no. 2, pp. 283-308 | DOI | MR | Zbl

[11] Akiyama, S.; Borbély, T.; Brunotte, H.; Pethő, A.; Thuswaldner, J. M. Generalized radix representations and dynamical systems. I, Acta Math. Hungar., Volume 108 (2005) no. 3, pp. 207-238 | DOI | MR | Zbl

[12] Akiyama, S.; Brunotte, H.; Pethő, A.; Thuswaldner, J. M. Generalized radix representations and dynamical systems. II, Acta Arith., Volume 121 (2006), pp. 21-61 | DOI | MR | Zbl

[13] Akiyama, S.; Brunotte, H.; Pethő, A. Cubic CNS polynomials, notes on a conjecture of W. J. Gilbert, J. Math. Anal. Appl., Volume 281 (2003) no. 1, pp. 402-415 | MR | Zbl

[14] Akiyama, S.; Brunotte, H.; Pethő, A.; Steiner, W. Remarks on a conjecture on certain integer sequences, Period. Math. Hungar., Volume 52 (2006), pp. 1-17 | DOI | MR | Zbl

[15] Akiyama, S.; Frougny, C.; Sakarovitch, J.; Brlek, S.; Reutenauer, Ch. On the representation of numbers in a rational base, Proceedings of Words 2005, Monographies du LaCIM 36 UQaM, Montréal, Canada (2005), pp. 47-64

[16] Akiyama, S.; Gjini, N. Connectedness of number-theoretic tilings (2004) (Preprint) | MR

[17] Akiyama, S.; Gjini, N. On the connectedness of self-affine attractors, Arch. Math. (Basel), Volume 82 (2004) no. 2, pp. 153-163 | MR | Zbl

[18] Akiyama, S.; Pethő, A. On canonical number systems, Theoret. Comput. Sci., Volume 270 (2002) no. 1-2, pp. 921-933 | DOI | MR | Zbl

[19] Akiyama, S.; Rao, H. New criteria for canonical number systems, Acta Arith., Volume 111 (2004) no. 1, pp. 5-25 | DOI | MR | Zbl

[20] Akiyama, S.; Rao, H.; Steiner, W. A certain finiteness property of Pisot number systems, J. Number Theory, Volume 107 (2004), pp. 135-160 | DOI | MR | Zbl

[21] Akiyama, S.; Sadahiro, T. A self-similar tiling generated by the minimal Pisot number, Acta Math. Info. Univ. Ostraviensis, Volume 6 (1998), pp. 9-26 | MR | Zbl

[22] Akiyama, S.; Scheicher, K. Symmetric shift radix systems and finite expansions (2004) (Preprint)

[23] Akiyama, S.; Scheicher, K. From number systems to shift radix systems, Nihonkai Math. J., Volume 16 (2005) no. 2, pp. 95-106 | MR | Zbl

[24] Akiyama, S.; Thuswaldner, J. M. Topological Properties of Two-Dimensional Number Systems, J. Théor. Nombres Bordeaux, Volume 12 (2000), pp. 69-79 | DOI | Numdam | MR | Zbl

[25] Akiyama, S.; Thuswaldner, J. M. The topological structure of fractal tilings generated by quadratic number systems, Comput. Math. Appl., Volume 49 (2005) no. 9-10, pp. 1439-1485 | DOI | MR | Zbl

[26] Allouche, J.-P.; Liardet, P. Generalized Rudin-Shapiro sequences, Acta Arith., Volume 60 (1991), pp. 1-27 | MR | Zbl

[27] Allouche, J.-P.; Shallit, J. O. Automatic sequences: Theory and Applications, Cambridge University Press, 2003 | MR | Zbl

[28] Aristotle The Physics, Loeb classical library, Harvard University Press, 1963

[29] Arnoux, P. Some remarks about Fibonacci multiplication, Appl. Math. Lett., Volume 2 (1989) no. 4, pp. 319-320 | DOI | MR | Zbl

[30] Arnoux, P.; Berthé, V.; Hilion, A.; Siegel, A. Fractal representation of the attractive lamination of an automorphism of the free group (2006) (Ann. Inst. Fourier) | Numdam

[31] Arnoux, P.; Fischer, A. M. The scenery flow for geometric structures on the torus: the linear setting, Chin. Ann. of Math., Volume 22B (2001) no. 4, pp. 1-44 | Zbl

[32] Arnoux, P.; Ito, S. Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin, Volume 8 (2001) no. 2, pp. 181-207 | MR | Zbl

[33] Arnoux, P.; Ito, S.; Sano, Y. Higher dimensional extensions of substitutions and their dual maps, J. Anal. Math., Volume 83 (2001), pp. 183-206 | DOI | MR | Zbl

[34] Arnoux, P.; Rauzy, G. Représentation géométrique de suites de complexité 2n+1, Bull. Soc. Math. France, Volume 119 (1991) no. 2, pp. 199-215 | Numdam | MR | Zbl

[35] Arnoux, P.; Yoccoz, J.-C. Construction de difféomorphismes pesudo-Anosov, C. R. Acad. Sci. Paris, Sér. A, Volume 292 (1981), pp. 75-78 | MR | Zbl

[36] Avizienis, A. Signed-digit number representations for fast parallel arithmetic, IEEE Trans., Volume EC-10 (1961), pp. 389-400 | MR

[37] Axel, F.; Gratias, D. Beyond Quasicrystals, 3, Les éditions de Physique-Springer, 1995 | MR | Zbl

[38] Baake, M.; Moody, R. V. Directions in mathematical quasicrystals, CRM Monograph Series, 13, American Mathematical Society, Providence, RI, 2000 | MR | Zbl

[39] Bajard, J.-C.; Didier, L.-S.; Kornerup, P. An RNS Montgomery modular multiplication algorithm, IEEE Trans. Comput., Volume 47 (1998) no. 7, pp. 766-776 | DOI | MR

[40] Bajard, J.-C.; Imbert, L.; Jullien, G. A.; Montuschi, P.; Schwarz, E. Parallel Montgomery Multiplication in GF(2 k ) using Trinomial Residue Arithmetic, Proceedings 17th IEEE symposium on Computer Arithmetic (2005), pp. 164-171

[41] Bajard, J.-C.; Imbert, L.; Nègre, C. Arithmetic Operations in Finite Fields of Medium Prime Characteristic Using the Lagrange Representation, IEEE Transactions on Computers, Volume 55 (2006), pp. 1167-1177 | DOI

[42] Bajard, J.-C.; Imbert, L.; Nègre, C.; Plantard, T. Multiplication in GF(p k ) for Elliptic Curve Cryptography, Proceedings 16th IEEE symposium on Computer Arithmetic (2003), pp. 181-187

[43] Bajard, J.-C.; Imbert, L.; Plantard, T. Modular number systems: beyond the Mersenne family, Selected areas in cryptography (Lecture Notes in Comput. Sci.), Volume 3357, Springer, Berlin, 2005, pp. 159-169 | MR | Zbl

[44] Bajard, J.-C.; Kla, S.; Muller, J.-M. BKM: a new hardware algorithm for complex elementary functions, IEEE Trans. Comput., Volume 43 (1994) no. 8, pp. 955-963 | DOI | MR | Zbl

[45] Bajard, J.-C.; Muller, J.-M. Calcul et arithmétique des ordinateurs, Hermes Sciences, 2004 (Traité IC2, série Informatique et Systèmes d’Information)

[46] Baker, V.; Barge, M.; Kwapisz, J. Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to beta-shifts (2006) (Ann. Inst. Fourier) | Numdam

[47] Bandt, C. Self-similar sets V. Integer matrices and fractal tilings of R n , Proc. Amer. Math. Soc., Volume 112 (1991) no. 2, pp. 549-562 | MR | Zbl

[48] Bandt, C.; Wang, Y. Disk-like Self-affine Tiles in 2 , Discrete Comput. Geom., Volume 26 (2001), pp. 591-601 | MR | Zbl

[49] Barat, G.; Downarowicz, T.; Iwanik, A.; Liardet, P. Propriétés topologiques et combinatoires des échelles de numération, Colloq. Math., Volume 84/85 (2000) no. 2, pp. 285-306 | MR | Zbl

[50] Barat, G.; Downarowicz, T.; Liardet, P. Dynamiques associées à une échelle de numération, Acta Arith., Volume 103 (2002) no. 1, pp. 41-78 | DOI | MR | Zbl

[51] Barat, G.; Grabner, P. J. An ergodic approach to a theorem of Delange (Preprint)

[52] Barat, G.; Liardet, P. Dynamical systems originated in the Ostrowski alpha-expansion, Ann. Univ. Sci. Budapest. Sect. Comput., Volume 24 (2004), pp. 133-184 | MR | Zbl

[53] Barge, M.; Diamond, B. Coincidence for substitutions of Pisot type, Bull. Soc. Math. France, Volume 130 (2002), pp. 619-626 | Numdam | MR | Zbl

[54] Barge, M.; Kwapisz, J. Elements of the theory of unimodular Pisot substitutions with an application to β-shifts, Algebraic and topological dynamics (Contemp. Math.), Volume 385, Amer. Math. Soc., 2005, pp. 89-99 | MR | Zbl

[55] Barge, M.; Kwapisz, J. Geometric theory of unimodular Pisot substitution (2006) (to appear in Amer. J. Math.) | MR | Zbl

[56] Bass, J. Suites uniformément denses, moyennes trigonométriques, fonctions pseudo-aléatoires, Bull. Soc. Math. France, Volume 87 (1959), pp. 1-69 | Numdam | MR | Zbl

[57] Bassily, N. L.; Kátai, I. Distribution of the values of q-additive functions on polynomial sequences, Acta Math. Hungar., Volume 68 (1995) no. 4, pp. 353-361 | DOI | MR | Zbl

[58] Béal, M.-P.; Perrin, D. Symbolic dynamics and finite automata, Handbook of formal languages, Vol. 2, Springer, Berlin, 1997, pp. 463-505 | MR

[59] Bellman, R.; Shapiro, H. N. On a problem in additive number theory, Ann. of Math., Volume 49 (1948) no. 2, pp. 333-340 | DOI | MR | Zbl

[60] Berthé, V. Autour du système de numération d’Ostrowski, Bull. Belg. Math. Soc. Simon Stevin, Volume 8 (2001) no. 2, pp. 209-239 | MR | Zbl

[61] Berthé, V.; Imbert, L.; Luk, F. T. On Converting Numbers to the Double-Base Number System, Advanced Signal Processing Algorithms, Architecture and Implementations XIV (Proceedings of SPIE), Volume 5559, SPIE (2004), pp. 70-78

[62] Berthé, V.; Rigo, M. Abstract numeration systems and tilings, Mathematical Foundations of Computer Science 2005 (Lecture Notes in Computer Science), Volume 3618, Springer Verlag (2005), pp. 131-143 | MR | Zbl

[63] Berthé, V.; Rigo, M. Odometers on regular languages (2006) (to appear in Theory Comput. Systems) | Zbl

[64] Berthé, V.; Siegel, A. Purely periodic β -expansions in the Pisot non-unit case (2005) (Preprint)

[65] Berthé, V.; Siegel, A. Tilings associated with beta-numeration and substitutions, Integers, Volume 5 (2005) no. 3, pp. A2, 46 pp. (electronic) | MR | Zbl

[66] Bertin, M.-J.; Decomps-Guilloux, A.; Grandet-Hugot, M.; Pathiaux-Delefosse, M.; Schreiber, J.-P. Pisot and Salem numbers, Birkhäuser Verlag, Basel, 1992 | MR | Zbl

[67] Bertrand, A. Codage des endomorphisms de Pisot du tore [0,1[ r et mesures simultanément invariantes pour deux homomorphismes du tore, Math. Z., Volume 231 (1999), pp. 369-381 | DOI | MR | Zbl

[68] Bertrand-Mathis, A. Développement en base θ; répartition modulo un de la suite (xθ n ) n0 ; langages codés et θ-shift, Bull. Soc. Math. France, Volume 114 (1986) no. 3, pp. 271-323 | Numdam | MR | Zbl

[69] Bertrand-Mathis, A. Comment écrire les nombres entiers dans une base qui n’est pas entière, Acta Math. Hungar., Volume 54 (1989) no. 3-4, pp. 237-241 | DOI | MR | Zbl

[70] Bestvina, M.; Handel, M. Train tracks and automorphisms of free groups, Ann. of Math. (2), Volume 135 (1992) no. 1, pp. 1-51 | DOI | MR | Zbl

[71] Billingsley, P. Ergodic theory and information, John Wiley & Sons Inc., New York, 1965 | MR | Zbl

[72] Bíró, A.; Deshouillers, J.-M.; Sós, V.T. Good approximation and characterization of subgroups of /, Studia Scientiarum Math. Hungarica, Volume 38 (2001), pp. 97-118 | DOI | MR | Zbl

[73] Bissinger, B. H. A Generalization of continued fractions, Bull. Amer. Math. Soc., Volume 50 (1944), pp. 868-876 | DOI | MR | Zbl

[74] Blanchard, F. β-expansions and symbolic dynamics, Theoret. Comput. Sci., Volume 65 (1989), pp. 131-141 | DOI | MR | Zbl

[75] Blanchard, F.; Nogueira, A.; Maas, A. Topics in symbolic dynamics and applications, Cambridge University Press, 2000 (London Mathematical Society Lecture Note Series, Vol. 279)

[76] Booth, A. D. A signed binary multiplication technique, Duart. J. Mech. Appl. Math., Volume 4 (1951), pp. 236-240 | DOI | MR | Zbl

[77] Bosma, W. Signed bits and fast exponentiation, J. Téor. Nombres Bordeaux, Volume 13 (2001) no. 1, pp. 27-41 | DOI | Numdam | MR | Zbl

[78] Bosma, W.; Dajani, K.; Kraaikamp, K. Entropy quotients and correct digits in number-theoretic expansions, IMS Lecture Notes-Monograph series. Dynamics & Stochastics, Volume 48 (2006), pp. 176-188 | Zbl

[79] Bovier, A.; Ghez, J.-M. Spectral properties of one-dimensional Schrödinger operator with potentials generated by substitutions, Commun. Math. Phys., Volume 158 (1993), pp. 45-66 | DOI | MR | Zbl

[80] Boyd, D. W. Salem numbers of degree four have periodic expansions, Théorie des nombres (Quebec, PQ, 1987), de Gruyter, Berlin, 1989, pp. 57-64 | MR | Zbl

[81] Boyd, D. W. On the beta expansion for Salem numbers of degree 6, Math. Comp., Volume 65 (1996) no. 214, pp. 861-875 | DOI | MR | Zbl

[82] Boyd, D. W. The beta expansion for Salem numbers, Organic mathematics (Burnaby, BC, 1995) (CMS Conf. Proc.), Volume 20, Amer. Math. Soc., Providence, RI, 1997, pp. 117-131 | MR | Zbl

[83] Bruin, H.; Keller, G.; St.-Pierre, M. Adding machines and wild attractor, Ergodic Theory Dynam. Systems, Volume 18 (1996), pp. 1267-1287 | MR | Zbl

[84] Brunotte, H. On trinomial bases of radix representations of algebraic integers, Acta Sci. Math. (Szeged), Volume 67 (2001) no. 3-4, pp. 521-527 | MR | Zbl

[85] Brunotte, H. Characterization of CNS trinomials, Acta Sci. Math. (Szeged), Volume 68 (2002) no. 3-4, pp. 673-679 | MR | Zbl

[86] Brunotte, H. On cubic CNS polynomials with three real roots, Acta Sci. Math. (Szeged), Volume 70 (2004) no. 3-4, pp. 495-504 | MR | Zbl

[87] Bruyère, V.; Hansel, G.; Michaux, C.; Villemaire, R. Logic and p-recognizable sets of integers, Bull. Belg. Math. Soc. Simon Stevin, Volume 1 (1994) no. 2, pp. 191-238 | MR | Zbl

[88] Burdík, Č.; Frougny, C.; Gazeau, J.-P.; Krejcar, R. Beta-integers as natural counting systems for quasicrystals, J. Phys. A, Volume 31 (1998) no. 30, pp. 6449-6472 | DOI | MR | Zbl

[89] Burdík, Č.; Frougny, C.; Gazeau, J.-P.; Krejcar, R. Beta-integers as a group, Dynamical systems (Luminy-Marseille, 1998), World Sci. Publishing, 2000, pp. 125-136 | MR

[90] Burton, R. M.; Kraaikamp, C.; Schmidt, T. A. Natural extensions for the Rosen fractions, Trans. Amer. Math. Soc., Volume 352 (2000) no. 3, pp. 1277-1298 | DOI | MR | Zbl

[91] Bush, L.E. An asymptotic formula for the average sum of digits of integers, Amer. Math. Monthly, Volume 47 (1940), pp. 154-156 | DOI | MR | Zbl

[92] Canterini, V. Connectedness of geometric representation of substitutions of Pisot type, Bull. Belg. Math. Soc. Simon Stevin, Volume 10 (2003), pp. 77-89 | MR | Zbl

[93] Canterini, V.; Siegel, A. Automate des préfixes-suffixes associé à une substitution primitive, J. Théor. Nombres Bordeaux, Volume 13 (2001) no. 2, pp. 353-369 | DOI | Numdam | MR | Zbl

[94] Canterini, V.; Siegel, A. Geometric representation of substitutions of Pisot type, Trans. Amer. Math. Soc., Volume 353 (2001) no. 12, pp. 5121-5144 | DOI | MR | Zbl

[95] Champernowne, D.G. The construction of decimals normal in the scale of ten, J. Lond. Math. Soc., Volume 8 (1933), pp. 254-260 | DOI | Zbl

[96] Chekhova, N.; Hubert, P.; Messaoudi, A. Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci, J. Théor. Nombres Bordeaux, Volume 13 (2001), pp. 371-394 | DOI | Numdam | MR | Zbl

[97] Ciet, M.; Sica, F.; Dawson, E.; Vaudenay, S. An analysis of double base number systems and a sublinear scalar multiplication algorithm, Progress in Cryptology-Proceedings of Mycrypt 2005, Volume 3715, Springer (2005), pp. 171-182 | Zbl

[98] Cobham, A. On the base-dependence of sets of numbers recognizable by finite automata, Math. Systems Theory, Volume 3 (1969), pp. 186-192 | DOI | MR | Zbl

[99] Cohen, H.; Frey, G.; Avanzi, R.; Doche, C.; Lange, T.; Nguyen, K.; Vercauteren, F. Handbook of elliptic and hyperelliptic curve cryptography, Discrete Mathematics and its Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2006 | MR

[100] Coquet, J. Sur les fonctions q-multiplicatives presque-périodiques, Note C. R. Acad. Sc. Paris, Volume 281 (1975) no. série A, pp. 63-65 | MR | Zbl

[101] Coquet, J. Sur les fonctions q-multiplicatives pseudo-aléatoires, Note C. R. Acad. Sc. Paris, Volume 282 (1976) no. série A, pp. 175-178 | MR | Zbl

[102] Coquet, J. Répartition modulo 1 des suites q-additives, Annales Soc. Math. Polonae, Series 1: Commentationes Mathematicae, Volume XXI (1979), pp. 23-42 | MR | Zbl

[103] Coquet, J. Power sums of digital sums, J. Number Theory, Volume 22 (1986), pp. 161-176 | DOI | MR | Zbl

[104] Coquet, J.; Kamae, T.; Mendès France, M. Sur la mesure spectrale de certaines suites arithmétiques, Bull. Soc. Math. France, Volume 105 (1977), pp. 369-384 | Numdam | MR | Zbl

[105] Coquet, J.; Mendès France, M. Suites à spectre vide et suites pseudo-aléatoires, Acta Arith., Volume 32 (1977), pp. 99-106 | MR | Zbl

[106] Coquet, J.; Rhin, G.; Toffin, P. Fourier-Bohr spectrum of sequences related to continued fractions, J. Number Theory, Volume 17 (1983) no. 3, pp. 327-336 | DOI | MR | Zbl

[107] Cornfeld, I. P.; Fomin, S. V.; Sinaĭ, Ya. G. Ergodic theory, Springer Verlag, New York, 1982 | MR | Zbl

[108] Dajani, K.; Kraaikamp, C. Ergodic Theory of Numbers, The Math. Association of America, 2002 | MR | Zbl

[109] Dajani, K.; Kraaikamp, C. Random β-expansions., Ergodic Theory Dynam. Systems, Volume 23 (2003) no. 2, pp. 461-479 | DOI | MR | Zbl

[110] Dajani, K.; Kraaikamp, C.; Liardet, P. Ergodic properties of signed binary expansions, Discrete and Continuous Dynamical Systems, Volume 15 (2006) no. 1, pp. 87-119 | DOI | MR | Zbl

[111] Dajani, K.; Kraaikamp, C.; Solomyak, B. The natural extension of the β-transformation, Acta Math. Hungar., Volume 73 (1996) no. 1-2, pp. 97-109 | DOI | MR | Zbl

[112] Dekking, F. M. The spectrum of dynamical systems arising from substitutions of constant length, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Volume 41 (1977/78) no. 3, pp. 221-239 | DOI | MR | Zbl

[113] Delange, H. Sur les fonctions q-additives ou q-multiplicatives, Acta Arith., Volume 21 (1972), p. 285-298 (errata insert) | MR | Zbl

[114] Delange, H. La fonction sommatoire de la fonction “somme des chiffres”, Enseignement Math., Volume 21 (1975), pp. 31-47 | MR | Zbl

[115] Denker, M.; Keane, M. Almost topological dynamical systems, Israel J. Math., Volume 34 (1979) no. 1-2, pp. 139-160 | DOI | MR | Zbl

[116] Dimitrov, S.; Imbert, L.; Mishra, P.K. Efficient and Secure Elliptic Curve Point Multiplication using Double-Base Chains, Advances in Cryptology - ASIACRYPT 2005, LNCS, Volume 3788, Springer Verlag (2005), pp. 59-78 | MR | Zbl

[117] Dooley, A. H. Markov odometers, Topics in dynamics and ergodic theory (London Math. Soc. Lecture Note Ser.), Volume 310, Cambridge Univ. Press, Cambridge, 2003, pp. 60-80 | MR | Zbl

[118] Doudékova-Puydebois, M. On dynamics related to a class of numeration systems, Monatsh. Math., Volume 135 (2002) no. 1, pp. 11-24 | DOI | MR | Zbl

[119] Downarowicz, T. Da capo al fine subshifts and odometers (Preprint)

[120] Downarowicz, T. Survey of odometers and Toeplitz flows, Algebraic and topological dynamics (Contemp. Math.), Volume 385, Amer. Math. Soc., 2005, pp. 7-37 | MR | Zbl

[121] Drmota, M.; Fuchs, M.; Manstavičius, E. Functional limit theorems for digital expansions, Acta Math. Hungar., Volume 98 (2003) no. 3, pp. 175-201 | DOI | MR | Zbl

[122] Drmota, M.; Rivat, J. The sum-of-digits function of squares, J. London Math. Soc. (2), Volume 72 (2005) no. 2, pp. 273-292 | DOI | MR | Zbl

[123] Drmota, M.; Steiner, W. The Zeckendorf expansion of polynomial sequences, J. Théor. Nombres Bordeaux, Volume 14 (2002) no. 2, pp. 439-475 | DOI | Numdam | MR | Zbl

[124] Drmota, M.; Tichy, R. F. Sequences, discrepancies and applications, Lecture Notes in Mathematics, 1651, Springer Verlag, Berlin, 1997 | MR | Zbl

[125] Dumont, J.-M.; Thomas, A. Systèmes de numération et fonctions fractales relatifs aux substitutions, Theoret. Comput. Sci., Volume 65 (1989) no. 2, pp. 153-169 | DOI | MR | Zbl

[126] Dumont, J.-M.; Thomas, A. Digital sum moments and substitutions, Acta Arith., Volume 64 (1993), pp. 205-225 | MR | Zbl

[127] Dumont, J.-M.; Thomas, A. Gaussian asymptotic properties of the sum-of-digits function, J. Number Theory, Volume 62 (1997), pp. 19-38 | DOI | MR | Zbl

[128] Dupain, Y.; Sós, Vera T. On the one-sided boundedness of discrepancy-function of the sequence {nα}, Acta Arith., Volume 37 (1980), pp. 363-374 | MR | Zbl

[129] Duprat, J.; Herreros, Y.; Kla, S. New redundant representations of complex numbers and vectors, IEEE Trans. Comput., Volume 42 (1993) no. 7, pp. 817-824 | DOI | MR

[130] Durand, F. A generalization of Cobham’s theorem, Theory Comput. Syst., Volume 31 (1998) no. 2, pp. 169-185 | DOI | MR | Zbl

[131] Durand, F. Sur les ensembles d’entiers reconnaissables, J. Théor. Nombres Bordeaux, Volume 10 (1998) no. 1, pp. 65-84 | DOI | Numdam | MR | Zbl

[132] Durand, F. Combinatorial and dynamical study of substitutions around the theorem of Cobham, Dynamics and randomness (Santiago, 2000) (Nonlinear Phenom. Complex Systems), Volume 7, Kluwer Acad. Publ., Dordrecht, 2002, pp. 53-94 | MR | Zbl

[133] Durand, F. A theorem of Cobham for non-primitive substitutions, Acta Arith., Volume 104 (2002) no. 3, pp. 225-241 | DOI | MR | Zbl

[134] Durand, F.; Host, B.; Skau, C. Substitutional dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory Dynam. Systems, Volume 19 (1999) no. 4, pp. 953-993 | DOI | MR | Zbl

[135] Duvall, P.; Keesling, J.; Vince, A. The Hausdorff Dimension of the Boundary of a Self-Similar Tile, J. London Math. Soc. (2), Volume 61 (2000), pp. 748-760 | DOI | MR | Zbl

[136] Ei, H.; Ito, S.; Rao, H. Atomic surfaces, tilings and coincidences II: reducible case (2006) (Ann. Institut Fourier) | Numdam

[137] Einsiedler, M.; Schmidt, K. Irreducibility, homoclinic points and adjoint actions of algebraic d -actions of rank one, Dynamics and randomness (Santiago, 2000) (Nonlinear Phenom. Complex Systems), Volume 7, Kluwer Acad. Publ., Dordrecht, 2002, pp. 95-124 | Zbl

[138] Elkharrat, A.; Frougny, C.; Gazeau, J.-P.; Verger-Gaugry, J.-L. Symmetry Groups for beta-lattices, Theoret. Comp. Sci., Volume 319 (2004), pp. 281-305 | DOI | MR | Zbl

[139] Everett, C. J. Representations for real numbers, Bull. Amer. Math. Soc., Volume 52 (1946), pp. 861-869 | DOI | MR | Zbl

[140] Fabre, S. Substitutions et β-systèmes de numération, Theoret. Comput. Sci., Volume 137 (1995) no. 2, pp. 219-236 | DOI | MR | Zbl

[141] Falconer, K. J. Techniques in Fractal Geometry, John Wiley and Sons, Chichester, New York, Weinheim, Brisbane, Singapore, Toronto, 1997 | MR | Zbl

[142] Farkas, G. Number systems in real quadratic fields, Ann. Univ. Sci. Budapest. Sect. Comput., Volume 18 (1999), pp. 47-59 | MR | Zbl

[143] Ferenczi, S. Bounded remainder sets, Acta Arith., Volume 61 (1992), pp. 319-326 | MR | Zbl

[144] Ferenczi, S. Systems of finite rank, Colloq. Math., Volume 73 (1997) no. 1, pp. 35-65 | MR | Zbl

[145] Ferenczi, S.; Mauduit, C.; Nogueira, A. Substitution dynamical systems: algebraic characterization of eigenvalues, Ann. Sci. École Norm. Sup., Volume 29 (1996) no. 4, pp. 519-533 | Numdam | MR | Zbl

[146] Flatto, L.; Lagarias, J. C.; Poonen, B. The zeta function of the beta-transformation, Ergodic Theory Dynam. Systems, Volume 14 (1994), pp. 237-266 | DOI | MR | Zbl

[147] Fraenkel, A. S. Systems of numeration, Amer. Math. Monthly, Volume 92 (1985) no. 2, pp. 105-114 | DOI | MR | Zbl

[148] Frougny, C. Number representation and finite automata, Topics in symbolic dynamics and applications (Temuco, 1997) (London Math. Soc. Lecture Note Ser.), Volume 279, Cambridge Univ. Press, 2000, pp. 207-228 | MR | Zbl

[149] Frougny, C. 7, Numeration systems (Encyclopedia of Mathematics and its Applications), Volume 90, Cambridge University Press (2002), pp. 230-268

[150] Frougny, C.; Solomyak, B. Finite beta-expansions, Ergodic Theory Dynam. Systems, Volume 12 (1992) no. 4, pp. 713-723 | DOI | MR | Zbl

[151] Fuchs, C.; Tijdeman, R. Substitutions, abstract number systems and the space-filling property (2006) (Ann. Inst. Fourier) | Numdam

[152] Gazeau, J.-P.; Verger Gaugry, J.-L. Geometric study of the beta-integers for a Perron number and mathematical quasicrystals, J. Théor. Nombres Bordeaux, Volume 16 (2004), pp. 125-149 | DOI | Numdam | MR | Zbl

[153] Gazeau, J.-P.; Verger-Gaugry, J.-L. Diffraction spectra of weighted Delone sets on β -lattices with β a quadratic unitary Pisot number (2006) (Ann. Inst. Fourier) | Numdam

[154] Gilbert, W. J. Radix representations of quadratic fields, J. Math. Anal. Appl., Volume 83 (1981), pp. 264-274 | DOI | MR | Zbl

[155] Gilbert, W. J. Complex Bases and Fractal Similarity, Ann. sc. math. Quebec, Volume 11 (1987) no. 1, pp. 65-77 | MR | Zbl

[156] Grabner, P. J.; Heuberger, C. On the number of optimal base 2 representations of integers, Designs, Codes and Cryptography, Volume 40 (2006), pp. 25-39 | DOI | MR

[157] Grabner, P. J.; Heuberger, C.; Prodinger, H.; Thuswaldner, J. M. Analysis of linear combination algorithms in cryptography, ACM Trans. Algorithms, Volume 1 (2005) no. 1, pp. 123-142 | DOI | MR

[158] Grabner, P. J.; Kirschenhofer, P.; Prodinger, H. The sum-of-digits function for complex bases, J. London Math. Soc. (2), Volume 57 (1998) no. 1, pp. 20-40 | DOI | MR | Zbl

[159] Grabner, P. J.; Liardet, P.; Tichy, R. F. Odometers and systems of numeration, Acta Arith., Volume 70 (1995) no. 2, pp. 103-123 | MR | Zbl

[160] Grabner, P. J.; Rigo, M. Additive functions with respect to numeration systems on regular languages, Monatsh. Math., Volume 139 (2003), pp. 205-219 | DOI | MR | Zbl

[161] Gröchenig, K.; Haas, A. Self-similar Lattice Tilings, J. Fourier Anal. Appl., Volume 1 (1994), pp. 131-170 | DOI | MR | Zbl

[162] Grünwald, V. Intorno all’aritmetica dei sistemi numerici a base negativa con particolare riguardo al sistema numerico a base negativo-decimale per lo studio delle sue analogie coll’aritmetica ordinaria (decimale), Giornale di matematiche di Battaglini, Volume 23 (1885), p. 203-221,367

[163] Hbaib, M.; Mkaouar, M. Sur le beta-développement de 1 dans le corps des séries formelles (Preprint) | Zbl

[164] Herman, R. H.; Putnam, I. F.; Skau, C. F. Ordered Bratteli diagrams, dimension groups and topological dynamics, Internat. J. Math., Volume 3 (1992) no. 6, pp. 827-864 | DOI | MR | Zbl

[165] Heuberger, C.; Katti, R.; Prodinger, H.; Ruan, X. The alternating greedy expansion and applications to computing digit expansions from left-to-right in cryptography, Theoret. Comput. Sci., Volume 341 (2005) no. 1-3, pp. 55-72 | DOI | MR | Zbl

[166] Heuberger, C.; Prodinger, H. On Minimal Expansions in Redundant Number Systems: Algorithms and Quantitative Analysis, Computing, Volume 66 (2001), pp. 377-393 | DOI | MR | Zbl

[167] Heuberger, C.; Prodinger, H. Carry Propagation in Signed digit representations, European J. of Combin., Volume 24 (2003), pp. 293-320 | DOI | MR | Zbl

[168] Hewitt, E.; Ross, K. A. Abstract harmonic analysis. Vol. I, Grundlehren der Mathematischen Wissenschaften, 115, Springer-Verlag, 1979 | MR | Zbl

[169] Hollander, M. Linear Numeration Systems, Finite Beta Expansions, and Discrete Spectrum of Substitution Dynamical Systems, Washington University (1996) (Ph. D. Thesis)

[170] Hollander, M.; Solomyak, B. Two-symbol Pisot substitutions have pure discrete spectrum, Ergodic Theory Dynam. Systems, Volume 23 (2003), pp. 533-540 | DOI | MR | Zbl

[171] Holton, C.; Zamboni, L. Q. Geometric realizations of substitutions, Bull. Soc. Math. France, Volume 126 (1998) no. 2, pp. 149-179 | Numdam | MR | Zbl

[172] Holton, C.; Zamboni, L. Q. Directed graphs and substitutions, Theory Comput. Syst., Volume 34 (2001), pp. 545-564 | MR | Zbl

[173] Host, B. Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable, Ergodic Theory Dynam. Systems, Volume 6 (1986) no. 4, pp. 529-540 | DOI | MR | Zbl

[174] Host, B. Représentation géométrique des substitutions sur 2 lettres (1992) (Unpublished manuscript)

[175] Host, B.; Méla, J.-F.; Parreau, F. Nonsingular transformations and spectral analysis of measures, Bull. Soc. Math. France, Volume 119 (1991) no. 1, pp. 33-90 | Numdam | MR | Zbl

[176] Hubert, P.; Messaoudi, A. Best simultaneous diophantine approximations of Pisot numbers and Rauzy fractals, Acta Arithmetica, Volume 124 (2006), pp. 1-15 | DOI | MR | Zbl

[177] Huszti, A.; Scheicher, K.; Surer, P.; Thuswaldner, J.M. Three-dimensional symmetric shift radix systems (Preprint)

[178] Hutchinson, J. E. Fractals and self-similarity, Indiana Univ. Math. J., Volume 30 (1981), pp. 713-747 | DOI | MR | Zbl

[179] Ifrah, G. Histoire universelle des chiffres, Robert Laffont, Paris, 1994 (Vol 1)

[180] Indlekofer, K.-H; Kátai, I.; Racsko, P. Some Remarks on Generalized Number Systems, Acta Sci. Math. (Szeged), Volume 57 (1993), pp. 543-553 | MR | Zbl

[181] Iosifescu, M.; Kraaikamp, C. Metrical Theory of Continued Fractions, Kluwer Academic Publisher, Dordrecht, 2002 | MR | Zbl

[182] Ito, S. A construction of transversal flows for maximal Markov automorphisms, Tokyo J. Math., Volume 1 (1978) no. 2, pp. 305-324 | DOI | MR | Zbl

[183] Ito, S. Some skew product transformations associated with continued fractions and their invariant measures, Tokyo J. Math., Volume 9 (1986), pp. 115-133 | DOI | MR | Zbl

[184] Ito, S. On the fractal curves induced from the complex radix expansion, Tokyo J. Math., Volume 12 (1989) no. 2, pp. 299-320 | DOI | MR | Zbl

[185] Ito, S.; Fujii, J.; Higashino, H.; Yasutomi, S.-I. On simultaneous approximation to (α,α 2 ) with α 3 +kα-1=0, J. Number Theory, Volume 99 (2003) no. 2, pp. 255-283 | DOI | MR | Zbl

[186] Ito, S.; Kimura, M. On Rauzy fractal, Japan J. Indust. Appl. Math., Volume 8 (1991) no. 3, pp. 461-486 | DOI | MR | Zbl

[187] Ito, S.; Nakada, H. Approximation of real numbers by the sequence {nα} and their metrical theory, Acta Math. Hung., Volume 52 (1988), pp. 91-100 | DOI | MR | Zbl

[188] Ito, S.; Ohtsuki, M. Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms, Tokyo J. Math., Volume 16 (1993) no. 2, pp. 441-472 | DOI | MR | Zbl

[189] Ito, S.; Rao, H. Purely periodic β-expansion with Pisot base, Proc. Amer. Math. Soc., Volume 133 (2005), pp. 953-964 | DOI | MR | Zbl

[190] Ito, S.; Rao, H. Atomic surfaces, tilings and coincidences I. Irreducible case, Israel J. Math., Volume 153 (2006), pp. 129-156 | DOI | MR | Zbl

[191] Ito, S.; Sano, Y. On periodic β-expansions of Pisot numbers and Rauzy fractals, Osaka J. Math., Volume 38 (2001) no. 2, pp. 349-368 | MR | Zbl

[192] Ito, S.; Takahashi, Y. Markov subshifts and realization of β-expansions, J. Math. Soc. Japan, Volume 26 (1974), pp. 33-55 | DOI | MR | Zbl

[193] Justin, J.; Pirillo, G. Episturmian words: shifts, morphisms and numeration systems, Int. J. Found. Comput. Sci., Volume 15 (2004), pp. 329-348 | DOI | MR | Zbl

[194] Kakeya, S. On a generalized scale of notations, Japan J. Math, Volume 1 (1924), pp. 95-108

[195] Kamae, T. Mutual singularity of spectra of dynamical systems given by “sums of digits” to different bases, Dynamical systems, Vol. I—Warsaw (Astérisque 49), Soc. Math. France, Paris, 1977, pp. 109-114 | Numdam | MR | Zbl

[196] Kamae, T. Numeration systems, fractals and stochastic processes, Israel J. Math., Volume 149 (2005), pp. 87-135 (Probability in mathematics) | DOI | MR | Zbl

[197] Kamae, T. Numeration systems as dynamical systems–Introduction, IMS Lecture Notes–Monograph series, Volume 48 (2006), pp. 198-211 | Zbl

[198] Kátai, I. Number systems in imaginary quadratic fields, Ann. Univ. Sci. Budapest. Sect. Comput., Volume 14 (1994), pp. 91-103 | MR | Zbl

[199] Kátai, I. Generalized number systems and fractal geometry, Pécs: Janus Pannonius Tudományegyetem, 40 p., 1995 | Zbl

[200] Kátai, I. Generalized number systems in Euclidean spaces, Math. Comput. Modelling, Volume 38 (2003) no. 7-9, pp. 883-892 | DOI | MR | Zbl

[201] Kátai, I.; Kőrnyei, I. On Number Systems in Algebraic Number Fields, Publ. Math. Debrecen, Volume 41 (1992) no. 3–4, pp. 289-294 | MR | Zbl

[202] Kátai, I.; Kovács, B. Kanonische Zahlensysteme in der Theorie der Quadratischen Zahlen, Acta Sci. Math. (Szeged), Volume 42 (1980), pp. 99-107 | MR | Zbl

[203] Kátai, I.; Kovács, B. Canonical Number Systems in Imaginary Quadratic Fields, Acta Math. Hungar., Volume 37 (1981), pp. 159-164 | DOI | MR | Zbl

[204] Kátai, I.; Szabó, J. Canonical Number Systems for Complex Integers, Acta Sci. Math. (Szeged), Volume 37 (1975), pp. 255-260 | MR | Zbl

[205] Katok, A.; Hasselblatt, B. Introduction to the modern theory of dynamical systems, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[206] Katznelson, Y. The action of diffeomorphism of the circle on the Lebesgue measure, J. Analyse Math., Volume 36 (1979), pp. 156-166 | DOI | MR | Zbl

[207] Kenyon, R.; Vershik, A. Arithmetic construction of sofic partitions of hyperbolic toral automorphisms, Ergodic Theory Dynam. Systems, Volume 18 (1998) no. 2, pp. 357-372 | DOI | MR | Zbl

[208] Kesten, H. On a conjecture of Erdős and Szüsz related to uniform distribution mod 1, Acta Arith., Volume 12 (1966/1967), pp. 193-212 | MR | Zbl

[209] Kitchens, B. P. Symbolic dynamics, Springer-Verlag, Berlin, 1998 | MR | Zbl

[210] Knuth, D. E. An imaginary number system, ACM, Volume 3 (1960), pp. 245-247 | DOI | MR

[211] Knuth, D. E. Fibonacci multiplication, Appl. Math. Lett., Volume 1 (1988) no. 1, pp. 57-60 | DOI | MR | Zbl

[212] Knuth, D. E. The Art of Computer Programming, Vol 2: Seminumerical Algorithms, Addison Wesley, London, 1998 | MR | Zbl

[213] Körmendi, S. Canonical number systems in ( 3 2)., Acta Sci. Math., Volume 50 (1986), pp. 351-357 | MR | Zbl

[214] Kotani, S. Jacobi matrices with random potential taking finitely many values, Rev. Math. Phys., Volume 1 (1989), pp. 129-133 | DOI | MR | Zbl

[215] Kovács, A. On the computation of attractors for invertible expanding linear operators in k , Publ. Math. Debrecen, Volume 56 (2000) no. 1-2, pp. 97-120 | MR | Zbl

[216] Kovács, A. Generalized binary number systems, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput., Volume 20 (2001), pp. 195-206 | MR | Zbl

[217] Kovács, A. Number expansions in lattices, Math. Comput. Modelling, Volume 38 (2003) no. 7-9, pp. 909-915 | DOI | MR | Zbl

[218] Kovács, B. Canonical Number Systems in Algebraic Number Fields, Acta Math. Hungar., Volume 37 (1981), pp. 405-407 | DOI | MR | Zbl

[219] Kovács, B. CNS Rings, Colloquia Mathematica Societatis János Bolyai 34. Topics in Classical Number Theory, Budapest (1981) | Zbl

[220] Kovács, B. CNS rings, Topics in classical number theory, Vol. I, II (Budapest, 1981) (Colloq. Math. Soc. János Bolyai), Volume 34, North-Holland, Amsterdam, 1984, pp. 961-971 | MR

[221] Kovács, B.; Pethő, A. Canonical systems in the ring of integers, Publ. Math. Debrecen, Volume 30 (1983) no. 1-2, pp. 39-45 | MR | Zbl

[222] Kovács, B.; Pethő, A. Number Systems in Integral Domains, Especially in Orders of Algebraic Number Fields, Acta Sci. Math. (Szeged), Volume 55 (1991), pp. 286-299 | MR | Zbl

[223] Kovács, B.; Pethő, A. On a representation of algebraic integers, Studia Sci. Math. Hungar., Volume 27 (1992) no. 1-2, pp. 169-172 | MR | Zbl

[224] Kraaikamp, C. Metric and Arithmetic Results for Continued Fraction Expansions, Universiteit van Amsterdam, Thesis, 1990

[225] Kuipers, L.; Niederreiter, H. Uniform distribution of sequences, Pure Appl. Math., Wiley, New York, 1974 | MR | Zbl

[226] Lagarias, J.; Wang, Y. Integral self-affine tiles in n I. Standard and Nonstandard Digit Sets, J. London Math. Soc., Volume 54 (1996) no. 2, pp. 161-179 | MR | Zbl

[227] Lagarias, J.; Wang, Y. Self-Affine Tiles in n , Adv. Math., Volume 121 (1996), pp. 21-49 | DOI | MR | Zbl

[228] Lagarias, J.; Wang, Y. Integral self-affine tiles in n II. Lattice Tilings, J. Fourier Anal. Appl., Volume 3 (1997), pp. 83-102 | DOI | MR | Zbl

[229] Lagarias, J. C.; Wang, Y. Substitution Delone sets, Discrete Comput. Geom., Volume 29 (2003), pp. 175-209 | MR | Zbl

[230] Lecomte, P.B.A.; Rigo, M. Numeration systems on a regular language, Theory Comput. Syst., Volume 34 (2001), pp. 27-44 | DOI | MR | Zbl

[231] Lecomte, P.B.A.; Rigo, M. On the representation of real numbers using regular languages, Theory Comput. Syst., Volume 35 (2002), pp. 13-38 | MR | Zbl

[232] Lecomte, P.B.A.; Rigo, M. Real numbers having ultimately periodic representations in abstract numeration systems, Inform. and Comput., Volume 192 (2004), pp. 57-83 | DOI | MR | Zbl

[233] Lee, J.-Y; Moody, R.V; Solomyak, B. Consequences of pure-point diffraction spectra for multiset substitution systems, Discrete and Computational Geometry, Volume 29 (2003), pp. 525-560 | DOI | MR | Zbl

[234] Lefèvre, V. An Algorithm that Computes a Lower Bound on the Distance Between a Segment and 2 , Developments in Reliable Computing, Kluwer, Dordrecht, Netherlands, 1999, pp. 203-212 | MR | Zbl

[235] Lefèvre, V.; Muller, J.-M.; Tisserand, A. Towards Correctly Rounded Transcendentals, IEEE Transactions on Computers, Volume 47 (1998) no. 11, pp. 1235-1243 | DOI

[236] Lesigne, E.; Mauduit, C. Propriétés ergodiques des suites q-multiplicatives, Compositio Math., Volume 100 (1996) no. 2, pp. 131-169 | Numdam | MR | Zbl

[237] Liardet, P. Regularities of distribution, Compositio Mathematica, Volume 61 (1987), pp. 267-293 | Numdam | MR | Zbl

[238] Liardet, P. Propriétés harmoniques de la numération suivant Jean Coquet, Colloque “Jean Coquet”, CIRM 23-27 sept. 1985, Publications Mathématiques d’Orsay, Orsay, Volume 88-02 (1988), pp. 1-35 | MR | Zbl

[239] Lind, D.; Marcus, B. An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[240] Lindenstrauss, E.; Schmidt, K. Invariant sets and measures of nonexpansive group automorphisms, Israel J. Math., Volume 144 (2004), pp. 29-60 | DOI | MR | Zbl

[241] Lothaire, M. Combinatorics on words, Encyclopedia of Mathematics and its Applications, 17, Addison-Wesley Publishing Co., Reading, Mass., 1983 | MR | Zbl

[242] Lothaire, M. Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications, 90, Cambridge University Press, 2002 | MR | Zbl

[243] Lothaire, M. Applied combinatorics on words, Encyclopedia of Mathematics and its Applications, 105, Cambridge University Press, 2005 | MR | Zbl

[244] Luo, J.; Thuswaldner, J. M. On the fundamental group of self-affine plane tiles (2006) (Ann. Inst. Fourier) | Numdam

[245] Manstavičius, E. Probabilistic theory of additive functions related to systems of numeration, New trends in probability and statistics, Vol. 4 (Palanga, 1996), VSP, Utrecht, 1997, pp. 413-429 | MR | Zbl

[246] Martensen, B. F. Generalized balanced pair algorithm, Topology Proc., Volume 28 (2004), pp. 163-178 (Spring Topology and Dynamical Systems Conference) | MR | Zbl

[247] Mauclaire, J.-L. An almost-sure estimate for the mean of generalized Q-multiplicative functions of modulus 1, J. Théor. Nombres Bordeaux, Volume 12 (2000) no. 1, pp. 1-12 | DOI | Numdam | MR | Zbl

[248] Mauduit, C. Caractérisation des ensembles normaux substitutifs, Invent. Math., Volume 95 (1989) no. 1, pp. 133-147 | DOI | MR | Zbl

[249] Mauduit, C.; Rivat, J. Sur un problème de Gelfond : la somme des chiffres des nombres premiers (2006) (Preprint)

[250] Mendès France, M. Nombres normaux. Applications aux fonctions pseudo-aléatoires, J. Analyse Math., Volume 20 (1967), pp. 1-56 | DOI | MR | Zbl

[251] Mendès France, M. Les suites à spectre vide et la répartition modulo 1, J. Number Theory, Volume 5 (1973), pp. 1-15 | DOI | MR | Zbl

[252] Messaoudi, A. Propriétés arithmétiques et dynamiques du fractal de Rauzy, J. Théor. Nombres Bordeaux, Volume 10 (1998) no. 1, pp. 135-162 | DOI | Numdam | MR | Zbl

[253] Messaoudi, A. Frontière du fractal de Rauzy et système de numération complexe, Acta Arith., Volume 95 (2000) no. 3, pp. 195-224 | MR | Zbl

[254] Messaoudi, A. Tribonacci multiplication, Appl. Math. Lett., Volume 15 (2002) no. 8, pp. 981-985 | DOI | MR | Zbl

[255] Meyer, Y. Algebraic numbers and harmonic analysis, North-Holland Publishing Co., 1972 (North-Holland Mathematical Library, Vol. 2) | MR | Zbl

[256] Meyer, Y.; Axel, F.; Gratias, D. Quasicrystals, diophantine approximation and algebraic numbers, Beyond quasicrystals (Les Houches, 1994), Les Ulis: Editions de Physique, 1995 | MR | Zbl

[257] Moody, R. V.; Moody, Robert V. Meyer sets and their duals, The Mathematics of long-range aperiodic order (CRM Monograph Series), Volume 13, Kluwer Academic Publishers, 1997, pp. 403-441 | MR | Zbl

[258] Mossé, B. Puissances de mots et reconnaissabilité des points fixes d’une substitution, Theoret. Comput. Sci., Volume 99 (1992) no. 2, pp. 327-334 | DOI | MR | Zbl

[259] Muller, J.-M. Arithmétique des Ordinateurs, Masson, Paris, 1989

[260] Muller, J.-M. Elementary functions, Birkhäuser Boston Inc., Boston, MA, 1997 (Algorithms and implementation) | MR | Zbl

[261] Nadkarni, M. G. Basic ergodic theory, Birkhäuser Advanced Texts: Basler Lehrbücher., Birkhäuser Verlag, Basel, 1998 | MR | Zbl

[262] Nakada, H.; Ito, S.; Tanaka, S. On the invariant measure for the transformations associated with some real continued-fractions, Keio Engineering Reports, Volume 30 (1977), pp. 159-175 | MR | Zbl

[263] Osikawa, M. Point spectra of non-singular flows, Publ. Res. Inst. Math. Sci., Volume 13 (1977/78) no. 1, pp. 167-172 | DOI | MR | Zbl

[264] Parry, W. On the β-expansion of real numbers, Acta Math. Acad. Sci. Hungar., Volume 11 (1960), pp. 401-416 | DOI | MR | Zbl

[265] Parry, W. Representations for real numbers, Acta Math. Acad. Sci. Hungar., Volume 15 (1964), pp. 95-105 | DOI | MR | Zbl

[266] Penney, W. A “binary” system for complex numbers, J. Assoc. Comput. Math., Volume 12 (1965), pp. 247-248 | Zbl

[267] Perrin, D.; Pin, J.-É. Infinite words, Pure and applied mathematics series, 141, Elsevier, 2004 (Automata, semigroups, logic and games) | Zbl

[268] Petersen, K. Ergodic theory, Cambridge University Press, Cambridge, 1989 | MR | Zbl

[269] Pethő, A. On a polynomial transformation and its application to the construction of a public key cryptosystem, Computational number theory (Debrecen, 1989), de Gruyter, Berlin, 1991, pp. 31-43 | Zbl

[270] Pollicott, M.; Yuri, M. Dynamical systems and ergodic theory, Cambridge University Press, Cambridge, 1998 | MR | Zbl

[271] Praggastis, B. Numeration systems and Markov partitions from self-similar tilings, Trans. Amer. Math. Soc., Volume 351 (1999) no. 8, pp. 3315-3349 | DOI | MR | Zbl

[272] Pytheas Fogg, N. Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Mathematics, 1794, Springer-Verlag, Berlin, 2002 (Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel) | MR | Zbl

[273] Queffélec, M. Mesures spectrales associées à certaines suites arithmétiques, Bull. Soc. Math. France, Volume 107 (1979) no. 4, pp. 385-421 | Numdam | MR | Zbl

[274] Queffélec, M. Substitution Dynamical Systems – Spectral Analysis, Lecture Notes in Mathematics, 1294, Springer Verlag, 1987 | MR | Zbl

[275] Queffélec, M. Une nouvelle propriété des suites de Rudin-Shapiro, Ann. Inst. Fourier, Volume 37 (1987) no. 2, pp. 115-138 | DOI | Numdam | MR | Zbl

[276] Rauzy, G. Nombres algébriques et substitutions, Bull. Soc. Math. France, Volume 110 (1982) no. 2, pp. 147-178 | Numdam | MR | Zbl

[277] Rauzy, G. Ensembles à restes bornés, Seminar on number theory, 1983–1984 (Talence, 1983/1984), Univ. Bordeaux I, Talence, 1984, pp. Exp. No. 24, 12 | MR | Zbl

[278] Rauzy, G. Rotations sur les groupes, nombres algébriques, et substitutions, Séminaire de Théorie des Nombres (Talence, 1987–1988), Univ. Bordeaux I, 1988 (Exp. No. 21) | Zbl

[279] Rauzy, G. Sequences defined by iterated morphisms, Sequences (Naples/Positano, 1988), Springer Verlag, 1990, pp. 275-286 | MR | Zbl

[280] Reitwiesner, G. W. Performing binary multiplication with the fewest possible additions and subtractions, Ordonance Computer Research Report, vol. 4, no. 3, Ballistic Research Laboratories, Aberdeen Proving Ground, Md., 1957 | MR

[281] Rényi, A. Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar., Volume 8 (1957), pp. 477-493 | DOI | MR | Zbl

[282] Rigo, M. Automates et systèmes de numération, Bull. Soc. Roy. Sci. Liège, Volume 73 (2004) no. 5-6, p. 257-270 (2005) | MR | Zbl

[283] Rigo, M.; Steiner, W. Abstract β-expansions and ultimately periodic representations, J. Number Theory, Volume 17 (2005), pp. 283-299 | Numdam | MR | Zbl

[284] Robinson, E. A. Jr. Symbolic dynamics and tilings of d , Symbolic dynamics and its applications (Proc. Sympos. Appl. Math., Amer. Math. Soc. Providence, RI), Volume 60 (2004), pp. 81-119 | MR | Zbl

[285] Rosema, S. W.; Tijdeman, R. The Tribonacci substitution, Integers, Volume 5 (2005) no. 3, pp. A13, 21 pp. (electronic) | MR | Zbl

[286] Sakarovitch, J. Éléments de théorie des automates, Vuibert informatique, 2003 | Zbl

[287] Sano, Y. On purely periodic beta-expansions of Pisot numbers, Nagoya Math. J., Volume 166 (2002), pp. 183-207 | MR | Zbl

[288] Scheicher, K. Kanonische Ziffernsysteme und Automaten, Grazer Math. Ber., Volume 333 (1997), pp. 1-17 | MR | Zbl

[289] Scheicher, K. β -expansions in algebraic function fields over finite fields (2006) (to appear in Finite Fields and Their Applications) | Zbl

[290] Scheicher, K.; Thuswaldner, J. M. Canonical number systems, counting automata and fractals, Math. Proc. Cambridge Philos. Soc., Volume 133 (2002) no. 1, pp. 163-182 | DOI | MR | Zbl

[291] Scheicher, K.; Thuswaldner, J. M. Digit systems in polynomial rings over finite fields, Finite Fields Appl., Volume 9 (2003) no. 3, pp. 322-333 | DOI | MR | Zbl

[292] Scheicher, K.; Thuswaldner, J. M. Neighbours of self-affine tiles in lattice tilings, Fractals in Graz 2001 (Trends Math.), Birkhäuser, Basel, 2003, pp. 241-262 | MR | Zbl

[293] Scheicher, K.; Thuswaldner, J. M. On the characterization of canonical number systems, Osaka J. Math., Volume 41 (2004) no. 2, pp. 327-351 | MR | Zbl

[294] Schmidt, K. Cocycles on ergodic transformation groups, Macmillan Lectures in Mathematics, 1, Macmillan Company of India, Ltd., Delhi, 1977 | MR | Zbl

[295] Schmidt, K. On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc., Volume 12 (1980) no. 4, pp. 269-278 | DOI | MR | Zbl

[296] Schmidt, K. Dynamical systems of algebraic origin, Progress in Mathematics, 128, Birkhäuser Verlag, Basel, 1995 | MR | Zbl

[297] Schmidt, K. Algebraic coding of expansive group automorphisms and two-sided beta-shifts, Monatsh. Math., Volume 129 (2000) no. 1, pp. 37-61 | DOI | MR | Zbl

[298] Schur, I. Über Potenzreihen, die im Inneren des Einheitskreises beschränkt sind II, J. reine angew. Math., Volume 148 (1918), pp. 122-145 | DOI

[299] Schweiger, F. Ergodic theory of fibred systems and metric number theory, Oxford Science Publications, The Clarendon Press Oxford University Press, New York, 1995 | MR | Zbl

[300] Schweiger, F. Multidimensional continued fractions, Oxford Science Publications, Oxford University Press, Oxford, 2000 | MR | Zbl

[301] Senechal, M. Quasicrystals and geometry, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[302] Sidorov, N. Bijective and general arithmetic codings for Pisot toral automorphisms, J. Dynam. Control Systems, Volume 7 (2001) no. 4, pp. 447-472 | DOI | MR | Zbl

[303] Sidorov, N. An arithmetic group associated with a Pisot unit, and its symbolic-dynamical representation, Acta Arith., Volume 101 (2002) no. 3, pp. 199-213 | DOI | MR | Zbl

[304] Sidorov, N.; Bezuglyi, S. Arithmetic dynamics, Topics in dynamics and ergodic theory (Lond. Math. Soc. Lect. Note Ser.), Volume 310, Cambridge University Press (2003), pp. 145-189 | MR | Zbl

[305] Sidorov, N.; Vershik, A. Bijective arithmetic codings of the 2-torus, and binary quadratic forms, J. Dynam. Cont. Sys., Volume 4 (1998), pp. 365-400 | DOI | Zbl

[306] Siegel, A. Représentation des systèmes dynamiques substitutifs non unimodulaires, Ergodic Theory Dynam. Systems, Volume 23 (2003) no. 4, pp. 1247-1273 | DOI | MR | Zbl

[307] Siegel, A. Pure discrete spectrum dynamical system and periodic tiling associated with a substitution, Ann. Inst. Fourier, Volume 54 (2004) no. 2, pp. 288-299 | Numdam | MR | Zbl

[308] Siegel, A.; Thuswaldner, J. Topological properties of self-affine tiles arising from beta-numeration systems or substitutions (2006) (Preprint)

[309] Sirvent, V. F. The common dynamics of the Tribonacci substitutions, Bull. Belg. Math. Soc. Simon Stevin, Volume 7 (2000) no. 4, pp. 571-582 | MR | Zbl

[310] Sirvent, V. F. Geodesic laminations as geometric realizations of Pisot substitutions, Ergodic Theory Dynam. Systems, Volume 20 (2000) no. 4, pp. 1253-1266 | DOI | MR | Zbl

[311] Sirvent, V. F.; Solomyak, B. Pure discrete spectrum for one-dimensional substitution systems of Pisot type, Canad. Math. Bull., Volume 45 (2002), pp. 697-710 | DOI | MR | Zbl

[312] Sirvent, V. F.; Wang, Y. Self-affine tiling via substitution dynamical systems and Rauzy fractals, Pacific J. Math., Volume 206 (2002) no. 2, pp. 465-485 | DOI | MR | Zbl

[313] Sirvent, V. F.; Wang, Y. Self-affine tiling via substitution dynamical systems and Rauzy fractals, Pacific J. Math., Volume 206 (2002) no. 2, pp. 465-485 | DOI | MR | Zbl

[314] Solinas, J. Low-weight binary representations for pairs of integers (2001) (http://www.cacr.math.uwaterloo.ca/techreports/2001/corr2001-41.ps)

[315] Solomyak, B. On the spectral theory of adic transformations, Representation theory and dynamical systems, Amer. Math. Soc., Providence, RI, 1992, pp. 217-230 | MR | Zbl

[316] Solomyak, B. Substitutions, adic transformations, and beta-expansions, Contemporary mathematics, Volume 135 (1992), pp. 361-372 | MR | Zbl

[317] Solomyak, B. Conjugates of beta-numbers and the zero-free domain for a class of analytic functions, Proc. London Math. Soc., Volume 68 (1994), pp. 477-498 | DOI | MR | Zbl

[318] Solomyak, B. Dynamics of self-similar tilings, Ergodic Theory Dynam. Systems, Volume 17 (1997), pp. 695-738 | DOI | MR | Zbl

[319] Steidl, G. On symmetric radix representation of Gaussian integers, BIT, Volume 29 (1989) no. 3, pp. 563-571 | DOI | MR | Zbl

[320] Steiner, W. Parry expansions of polynomial sequences, Integers, Volume 2 (2002), pp. 28 (electronic) | MR | Zbl

[321] Stewart, M. Irregularities of uniform distribution, Acta Math. Acad. Scient. Hung., Volume 37 (1981), pp. 185-221 | DOI | MR | Zbl

[322] Stolarsky, K. B. Power and exponential sums of digital sums related to binomial coefficient parity, S.I.A.M. J. Appl. Math., Volume 32 (1977), pp. 717-730 | DOI | MR | Zbl

[323] Strichartz, R.; Wang, Y. Geometry of Self-Affine Tiles I, Indiana Univ. Math. J., Volume 48 (1999), pp. 1-23 | MR | Zbl

[324] Surer, P. New characterization results for shift radix systems (Preprint)

[325] Süto, A. Schrödinger difference equation with deterministic ergodic potentials, Beyond Quasicrystals, Volume 3, Les éditions de Physique-Springer, 1995 | MR

[326] Thaler, M. Transformations on [0,1] with infinite invariant measures, Israel J. Math., Volume 46 (1983) no. 1-2, pp. 67-96 | DOI | MR | Zbl

[327] Thurston, W. Groups, Tilings and Finite State Automata (1989) (AMS Colloquium Lecture Notes)

[328] Thuswaldner, J. M. Attractors of invertible expanding linear operators and number systems in 2 , Publ. Math. (Debrecen), Volume 58 (2001), pp. 423-440 | MR | Zbl

[329] Thuswaldner, J. M. Unimodular Pisot substitutions and their associated tiles (2006) (to appear in Unimodular Pisot substitutions and their associated tiles) | Numdam | Zbl

[330] Trollope, J. R. An explicit expression for binary digital sums, Math. Mag., Volume 41 (1968), pp. 21-27 | DOI | MR | Zbl

[331] Veerman, J. J. P. Hausdorff dimension of boundaries of self-affine tiles in n , Bol. Mex. Mat., Volume 3 (1998) no. 4, pp. 1-24 | MR | Zbl

[332] Verger-Gaugry, J.-L. On Gaps in Rényi β -expansions of unity for β > 1 an algebraic number (2006) (preprint)

[333] Verger-Gaugry, J.-L.; Nyssen, L. On self-similar finitely generated uniformly discrete (SFU-) sets and sphere packings, IRMA Lectures in Mathematics and Mathematical Physics, “Physics and Number Theory”, Volume 10, European Mathematical Society, 2006, pp. 39-78 | Zbl

[334] Vershik, A.; Sidorov, N. Arithmetic expansions associated with the rotation of a circle and continued fractions, St. Petersburg Math. J., Volume 5 (1994) no. 6, pp. 1121-1136 | MR | Zbl

[335] Vershik, A. M. A theorem on Markov periodic approximation in ergodic theory, J. Soviet Math., Volume 28 (1985), pp. 667-673 | DOI | Zbl

[336] Vershik, A. M. Arithmetic isomorphism of hyperbolic automorphisms of a torus and of sofic shifts, Funktsional. Anal. i Prilozhen., Volume 26 (1992) no. 3, pp. 22-27 | DOI | MR | Zbl

[337] Vidal, J.; Mosseri, R. Generalized Rauzy tilings: construction and electronic properties, Materials Science and Engineering A, Volume 294–296 (2000), pp. 572-575 | DOI

[338] Vidal, J.; Mosseri, R. Generalized quasiperiodic Rauzy tilings, J. Phys. A, Volume 34 (2001) no. 18, pp. 3927-3938 | DOI | MR | Zbl

[339] Vince, A. Digit Tiling of Euclidean Space, Directions in Mathematical Quasicrystals, Amer. Math. Soc., Providence, RI (2000), pp. 329-370 | MR | Zbl

[340] Walters, P. An introduction to ergodic theory, Springer-Verlag, New York, 1982 | MR | Zbl

[341] Wang, Y.; Lau, K. S. Self-Affine Tiles, Advances in Wavelet, Springer (1998), pp. 261-285 | MR

[342] Wiener, N. The spectrum of an array and its application to the study of the translation properties of a simple class of arithmetical functions, J. Math. and Phys., Volume 6 (1927), pp. 145-157

[343] Wirsing, E. On the theorem of Gauss-Kusmin-Lévy and a Frobenius-type theorem for function spaces, Acta Arith., Volume 24 (1973/74), pp. 507-528 | MR | Zbl

Cité par Sources :