Topological properties of Rauzy fractals
Mémoires de la Société Mathématique de France, no. 118 (2009), 140 p.
The full text of recent articles is available to journal subscribers only. See the article on the journal's website

Substitutions are combinatorial objects (one replaces a letter by a word) which produce sequences by iteration. They occur in many mathematical fields, roughly as soon as a repetitive process appears. In the present monograph we deal with topological and geometric properties of substitutions, in particular, we study properties of the Rauzy fractals associated to substitutions. To be more precise, let σ be a substitution over the finite alphabet 𝒜. We assume that the incidence matrix of σ is primitive and that its dominant eigenvalue is a unit Pisot number (i.e., an algebraic integer greater than one whose norm is equal to one and all of whose Galois conjugates are of modulus strictly smaller than one). It is well-known that one can attach to σ a set 𝒯 which is called central tile or Rauzy fractal of σ. Such a central tile is a compact set that is the closure of its interior and decomposes in a natural way in n=|𝒜| subtiles 𝒯(1),...,𝒯(n). The central tile as well as its subtiles are graph directed self-affine sets that often have fractal boundary. Pisot substitutions and central tiles are of high relevance in several branches of mathematics like tiling theory, spectral theory, Diophantine approximation, the construction of discrete planes and quasicrystals as well as in connection with numeration like generalized continued fractions and radix representations. The questions coming up in all these domains can often be reformulated in terms of questions related to the topology and the geometry of the underlying central tile. After a thorough survey of important properties of unit Pisot substitutions and their associated Rauzy fractals the present monograph is devoted to the investigation of a variety of topological properties of 𝒯 and its subtiles. Our approach is an algorithmic one. In particular, we dwell upon the question whether 𝒯 and its subtiles induce a tiling, calculate the Hausdorff dimension of their boundary, give criteria for their connectivity and homeomorphy to a closed disk and derive properties of their fundamental group. The basic tools for our criteria are several classes of graphs built from the description of the tiles 𝒯(i) (1in) as the solution of a graph directed iterated function system and from the structure of the tilings induced by these tiles. These graphs are of interest in their own right. For instance, they can be used to construct the boundaries 𝒯 as well as 𝒯(i) (1in) and all points where two, three or four different tiles of the induced tilings meet. When working with central tiles in one of the above mentioned contexts it is often useful to know such intersection properties of tiles. In this sense the present monograph also aims at providing tools for “everyday’s life” when dealing with topological and geometric properties of substitutions. Many examples are given throughout the text in order to illustrate our results. Moreover, we give perspectives for further directions of research related to the topics discussed in this monograph.

Les fractals de Rauzy apparaissent dans diverses branches des mathématiques telles que la théorie des nombres, les systèmes dynamiques, la combinatoire et la théorie des quasi-cristaux. De nombreuses questions font alors intervenir la structure topologique des fractals. Cette monographie propose une étude systématique des propriétés topologiques des fractals de Rauzy. Les premiers chapitres de ce document rappellent les enjeux mathématiques relatifs aux fractals de Rauzy ainsi que les principaux résultats connus à leur sujet. Sont ensuite discutés des propriétés de pavages, de connexité, d’homéomorphisme à un disque, ainsi que le groupe fondamental de ces ensembles. Les méthodes s’appuient sur des résultats en topologie du plan et sur la construction de graphes pour décrire la structure des pavages associés aux fractals. De nombreux exemples caractéristiques sont présentés. Un chapitre final discute des principales perspectives de recherches liées à cette thématique.

DOI : https://doi.org/10.24033/msmf.430
Classification:  28A80,  11A63,  54F65
Keywords: Rauzy fractal, tiling, beta-numeration, connectivity, homeomorphy to a disk, fundamental group
@book{MSMF_2009_2_118__1_0,
     author = {Siegel, Anne and Thuswaldner, J\"org M.},
     title = {Topological properties of Rauzy fractals},
     series = {M\'emoires de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {118},
     year = {2009},
     doi = {10.24033/msmf.430},
     zbl = {1229.28021},
     mrnumber = {2721985},
     language = {en},
     url = {http://www.numdam.org/item/MSMF_2009_2_118__1_0}
}
Siegel, Anne; Thuswaldner, Jörg M. Topological properties of Rauzy fractals. Mémoires de la Société Mathématique de France, Serie 2, , no. 118 (2009), 140 p. doi : 10.24033/msmf.430. http://www.numdam.org/item/MSMF_2009_2_118__1_0/

[1] B. Adamczewski & Y. Bugeaud« On the complexity of algebraic numbers. I. Expansions in integer bases », Ann. of Math. 165 (2007), p. 547–565. | MR 2299740 | Zbl 1195.11094

[2] B. Adamczewski, Y. Bugeaud & L. Davison« Continued fractions and transcendental numbers », Ann. Inst. Fourier (Grenoble) 56 (2006), p. 2093–2113. | Numdam | MR 2290775 | Zbl 1152.11034

[3] B. Adamczewski, C. Frougny, A. Siegel & W. Steiner« Rational numbers with purely periodic beta-expansion », J. London Math. Soc. 42 (2010), p. 538–552. | MR 2651949 | Zbl 1211.11010

[4] R. L. Adler« Symbolic dynamics and Markov partitions », Bull. Amer. Math. Soc. (N.S.) 35 (1998), p. 1–56. | Zbl 0892.58019

[5] R. L. Adler & B. WeissSimilarity of automorphisms of the torus, Memoirs of the American Mathematical Society, No. 98, Amer. Math. Soc., 1970. | MR 257315 | Zbl 0195.06104

[6] S. Akiyama« Pisot numbers and greedy algorithm », in Number theory (Eger, 1996), de Gruyter, 1998, p. 9–21. | MR 1628829 | Zbl 0919.11063

[7] —, « Self affine tiling and Pisot numeration system », in Number theory and its applications (Kyoto, 1997), Dev. Math., vol. 2, Kluwer Acad. Publ., 1999, p. 7–17. | MR 1738803 | Zbl 0999.11065

[8] —, « Cubic Pisot units with finite beta expansions », in Algebraic number theory and Diophantine analysis (Graz, 1998), de Gruyter, 2000, p. 11–26. | Zbl 1001.11038

[9] —, « On the boundary of self affine tilings generated by Pisot numbers », J. Math. Soc. Japan 54 (2002), p. 283–308. | MR 1883519 | Zbl 1032.11033

[10] —, « Pisot number system and its dual tiling », in Physics and Theoretical Computer Science (Cargese, 2006), IOS Press, 2007, p. 133–154.

[11] S. Akiyama, G. Barat, V. Berthé & A. Siegel« Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions », Monatsh. Math. 155 (2008), p. 377–419. | MR 2461585 | Zbl 1190.11005

[12] S. Akiyama, T. Borbély, H. Brunotte, A. Pethő & J. M. Thuswaldner« Generalized radix representations and dynamical systems. I », Acta Math. Hungar. 108 (2005), p. 207–238. | MR 2162561 | Zbl 1110.11003

[13] S. Akiyama, H. Brunotte, A. Pethő & J. M. Thuswaldner« Generalized radix representations and dynamical systems. II », Acta Arith. 121 (2006), p. 21–61. | MR 2216302 | Zbl 1142.11055

[14] —, « Generalized radix representations and dynamical systems. III », Osaka J. Math. 45 (2008), p. 347–374. | MR 2441944 | Zbl 1217.11007

[15] —, « Generalized radix representations and dynamical systems. IV », Indag. Math. (N.S.) 19 (2008), p. 333–348. | MR 2513054 | Zbl 1190.11041

[16] S. Akiyama, G. Dorfer, J. M. Thuswaldner & R. Winkler« On the fundamental group of the Sierpiński-gasket », Topology Appl. 156 (2009), p. 1655–1672. | MR 2521702 | Zbl 1182.57001

[17] S. Akiyama & G. Nertila« On the connectedness of self-affine tilings », Arch. Math. 82 (2004), p. 153–163. | Zbl 1063.37008

[18] S. Akiyama, H. Rao & W. Steiner« A certain finiteness property of Pisot number systems », J. Number Theory 107 (2004), p. 135–160. | MR 2059954 | Zbl 1052.11055

[19] S. Akiyama & K. Scheicher« Intersecting two-dimensional fractals with lines », Acta Sci. Math. (Szeged) 71 (2005), p. 555–580. | MR 2206596 | Zbl 1111.11006

[20] C. Allauzen« Une caractérisation simple des nombres de Sturm », J. Théor. Nombres Bordeaux 10 (1998), p. 237–241. | Numdam | MR 1828243

[21] J.-P. Allouche & J. O. ShallitAutomatic sequences: Theory and applications, Cambridge Univ. Press, 2002. | MR 1997038

[22] J. Anderson & I. Putnam« Topological invariants for substitution tilings and their associated C * -algebras », Ergodic Theory Dynam. Systems 18 (1998), p. 509–537. | MR 1631708 | Zbl 1053.46520

[23] P. Arnoux« Un exemple de semi-conjugaison entre un échange d’intervalles et une translation sur le tore », Bull. Soc. Math. France 116 (1988), p. 489–500. | Numdam | MR 1005392 | Zbl 0703.58045

[24] P. Arnoux, J. Bernat & X. Bressaud« Geometrical models for substitutions », Experiment. Math. (2010), to appear. | MR 2802726 | Zbl 1266.37008

[25] P. Arnoux, V. Berthé, H. Ei & S. Ito« Tilings, quasicrystals, discrete planes, generalized substitutions, and multidimensional continued fractions », in Discrete models: combinatorics, computation, and geometry (Paris, 2001), Discrete Math. Theor. Comput. Sci. Proc., AA, Maison Inform. Math. Discrèt. (MIMD), Paris, 2001, p. 059–078. | MR 1888763 | Zbl 1017.68147

[26] P. Arnoux, V. Berthé, T. Fernique & D. Jamet« Functional stepped surfaces, flips, and generalized substitutions », Theoret. Comput. Sci. 380 (2007), p. 251–265. | MR 2330996 | Zbl 1119.68136

[27] P. Arnoux, V. Berthé, A. Hilion & A. Siegel« Fractal representation of the attractive lamination of an automorphism of the free group », Ann. Inst. Fourier (Grenoble) 56 (2006), p. 2161–2212. | Numdam | MR 2290778 | Zbl 1146.20020

[28] P. Arnoux, V. Berthé & S. Ito« Discrete planes, 2 -actions, Jacobi-Perron algorithm and substitutions », Ann. Inst. Fourier (Grenoble) 52 (2002), p. 305–349. | MR 1906478 | Zbl 1017.11006

[29] P. Arnoux, M. Furukado, E. Harriss & S. Ito« Algebraic numbers, group automorphisms and substitution rules on the plane », Trans. Amer. Math. Soc. (2010), in press.

[30] P. Arnoux & S. Ito« Pisot substitutions and Rauzy fractals », Bull. Belg. Math. Soc. Simon Stevin 8 (2001), p. 181–207. | MR 1838930 | Zbl 1007.37001

[31] V. Baker, M. Barge & J. Kwapisz« Geometric realization and coincidence for reducible non-unimodular pisot tiling spaces with an application to beta-shifts », Ann. Inst. Fourier 56 (2006), p. 2213–2248. | Numdam | MR 2290779 | Zbl 1138.37008

[32] C. Bandt & G. Gelbrich« Classification of self-affine lattice tilings », J. London Math. Soc. 50 (1994), p. 581–593. | MR 1299459 | Zbl 0820.52012

[33] G. Barat, V. Berthé, , P. Liardet & J. M. Thuswaldner – « Dynamical directions in numeration », Ann. Inst. Fourier (Grenoble) 56 (2006), p. 1987–2092. | Numdam | MR 2290774

[34] M. Barge & B. Diamond« Coincidence for substitutions of Pisot type », Bull. Soc. Math. France 130 (2002), p. 619–626. | Numdam | MR 1947456 | Zbl 1028.37008

[35] M. Barge, B. Diamond & R. Swanson« The branch locus for one-dimensional Pisot tiling spaces », Fund. Math. 204 (2009), p. 215–240. | MR 2520153 | Zbl 1185.37013

[36] M. Barge & J. Kwapisz« Geometric theory of unimodular Pisot substitutions », Amer. J. Math. 128 (2006), p. 1219–1282. | MR 2262174 | Zbl 1152.37011

[37] F. Bassino« Beta-expansions for cubic Pisot numbers », in LATIN 2002: Theoretical informatics (Cancun), Lecture Notes in Comput. Sci., vol. 2286, Springer, 2002, p. 141–152. | MR 1966122 | Zbl 1152.11342

[38] L. E. Baum & M. M. Sweet« Continued fractions of algebraic power series in characteristic 2 », Ann. of Math. 103 (1976), p. 593–610. | MR 409372 | Zbl 0312.10024

[39] M.-P. Béal & D. Perrin« Symbolic dynamics and finite automata », in Handbook of Formal Languages (G. Rozenberg & A. Salomaa, éds.), vol. 2, Springer, 1997, p. 463–503. | MR 1470015

[40] J. Bernat« Arithmetics in β-numeration », Discrete Math. Theor. Comput. Sci. 9 (2007), p. 85–106. | MR 2318443 | Zbl 1152.68456

[41] —, « Computation of L for several cubic Pisot numbers », Discrete Math. Theor. Comput. Sci. 9 (2007), p. 175–193. | MR 2306527 | Zbl 1165.11061

[42] J. Berstel & D. Perrin« The origins of combinatorics on words », European J. Combin. 28 (2007), p. 996–1022. | MR 2300777 | Zbl 1111.68092

[43] V. Berthé, S. Ferenczi & L. Q. Zamboni« Interactions between dynamics, arithmetics and combinatorics: the good, the bad, and the ugly », in Algebraic and topological dynamics, Contemp. Math., vol. 385, Amer. Math. Soc., 2005, p. 333–364. | MR 2180244 | Zbl 1156.37301

[44] V. Berthé & T. Fernique« Brun expansions of stepped surfaces », Preprint (2010). | MR 2765621 | Zbl 1236.11011

[45] V. Berthé & A. Siegel« Tilings associated with beta-numeration and substitutions », INTEGERS (Electronic Journal of Combinatorial Number Theory) 5 (2005). | MR 2191748 | Zbl 1139.37008

[46] —, « Purely periodic β-expansions in the Pisot non-unit case », J. Number Theory 127 (2007), p. 153–172. | MR 2362431 | Zbl 1197.11139

[47] V. Berthé, A. Siegel, W. Steiner, P. Surer & J. M. Thuswaldner« Fractal tiles associated with shift radix systems », Advances in Mathematics (2010), in press. | MR 2735753 | Zbl 1221.11018

[48] V. Berthé, A. Siegel & J. M. Thuswaldner« Substitutions, Rauzy fractals, and tilings », in Combinatorics, Automata, and Number Theory (V. Berthé & M. Rigo, éds.), Encyclopedia of Mathematics and its Applications, Cambridge Univ. Press, to appear. | MR 2759108 | Zbl 1247.37015

[49] A. Bertrand-Mathis« Développement en base θ; répartition modulo un de la suite (xθ n ) n0 ; langages codés et θ-shift », Bull. Soc. Math. France 114 (1986), p. 271–323. | Numdam | MR 878240 | Zbl 0628.58024

[50] M. Bestvina, M. Feighn & M. Handel« Laminations, trees, and irreducible automorphisms of free groups », Geom. Funct. Anal. 7 (1997), p. 215–244. | Zbl 0884.57002

[51] —, « Laminations, trees, and irreducible automorphisms of free groups », Geom. Funct. Anal. 7 (1997), p. 215–244. | MR 1445386 | Zbl 0884.57002

[52] M. Bestvina & M. Handel« Train tracks and automorphisms of free groups », Ann. of Math. 135 (1992), p. 1–51. | MR 1147956 | Zbl 0757.57004

[53] F. Blanchard« β-expansions and symbolic dynamics », Theoret. Comput. Sci. 65 (1989), p. 131–141. | MR 1020481 | Zbl 0682.68081

[54] E. Bombieri & J. E. Taylor« Which distributions of matter diffract? An initial investigation », J. Physique 47 (1986), p. C3–19–C3–28. | MR 866320 | Zbl 0693.52002

[55] R. BowenEquilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Math., vol. 470, Springer, 1975. | MR 442989 | Zbl 0308.28010

[56] —, « Markov partitions are not smooth », Proc. Amer. Math. Soc. 71 (1978), p. 130–132. | MR 474415 | Zbl 0417.58011

[57] c. Burdik, C. Frougny, J.-P. Gazeau & R. Krejcar – « Beta-integers as natural counting systems for quasicrystals », J. of Physics A: Math. Gen. 31 (1998), p. 6449–6472. | MR 1644115

[58] J. W. Cannon & G. R. Conner« The combinatorial structure of the Hawaiian earring group », Topology Appl. 106 (2000), p. 225–271. | MR 1775709 | Zbl 0955.57002

[59] V. Canterini« Connectedness of geometric representation of substitutions of Pisot type », Bull. Belg. Math. Soc. Simon Stevin 10 (2003), p. 77–89. | MR 2032327 | Zbl 1031.37015

[60] V. Canterini & A. Siegel« Geometric representation of substitutions of Pisot type », Trans. Amer. Math. Soc. 353 (2001), p. 5121–5144. | MR 1852097 | Zbl 1142.37302

[61] J. Cassaigne, S. Ferenczi & L. Q. Zamboni« Imbalances in Arnoux-Rauzy sequences », Ann. Inst. Fourier (Grenoble) 50 (2000), p. 1265–1276. | MR 1799745 | Zbl 1004.37008

[62] E. Cawley« Smooth Markov partitions and toral automorphisms », Ergodic Theory Dynam. Systems 11 (1991), p. 633–651. | MR 1145614 | Zbl 0754.58028

[63] N. Chekhova, P. Hubert & A. Messaoudi« Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci », J. Théor. Nombres Bordeaux 13 (2001), p. 371–394. | Numdam | MR 1879664

[64] A. Cobham« Uniform tag sequences », Math. Systems Theory 6 (1972), p. 164–192. | MR 457011 | Zbl 0253.02029

[65] G. R. Conner & J. W. Lamoreaux« On the existence of universal covering spaces for metric spaces and subsets of the Euclidean plane », Fund. Math. 187 (2005), p. 95–110. | Zbl 1092.57001

[66] D. Cooper« Automorphisms of free groups have finitely generated fixed point sets », J. Algebra 111 (1987), p. 453–456. | MR 916179 | Zbl 0628.20029

[67] T. Coulbois, A. Hilion & M. Lustig« -trees and laminations for free groups. I. Algebraic laminations », J. Lond. Math. Soc. 78 (2008), p. 723–736. | MR 2456901 | Zbl 1197.20019

[68] —, « -trees and laminations for free groups. II. The dual lamination of an -tree », J. Lond. Math. Soc. 78 (2008), p. 737–754. | Zbl 1198.20023

[69] —, « -trees and laminations for free groups. III. Currents and dual -tree metrics », J. Lond. Math. Soc. 78 (2008), p. 755–766. | Zbl 1200.20018

[70] —, « -trees, dual laminations and compact systems of partial isometries », Math. Proc. Cambridge Philos. Soc. 147 (2009), p. 345–368. | MR 2525931 | Zbl 1239.20030

[71] D. Crisp, W. Moran, A. Pollington & P. Shiue« Substitution invariant cutting sequences », J. Théor. Nombres Bordeaux 5 (1993), p. 123–137. | Numdam | MR 1251232 | Zbl 0786.11041

[72] F. M. Dekking« The spectrum of dynamical systems arising from substitutions of constant length », Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 41 (1977/78), p. 221–239. | MR 461470 | Zbl 0348.54034

[73] O. Delgrange & E. Rivals« Star: an algorithm to search for tandem approximate repeats », Bioinformatics 20 (2004), p. 2812–20.

[74] J.-M. Dumont & A. Thomas« Systemes de numeration et fonctions fractales relatifs aux substitutions », Theoret. Comput. Sci. 65 (1989), p. 153–169. | MR 1020484 | Zbl 0679.10010

[75] —, « Digital sum moments and substitutions », Acta Arith. 64 (1993), p. 205–225. | MR 1225425 | Zbl 0774.11041

[76] —, « Gaussian asymptotic properties of the sum-of-digits function », J. Number Theory 62 (1997), p. 19–38. | MR 1430000 | Zbl 0869.11009

[77] F. Durand« A generalization of Cobham’s theorem », Theory Comput. Syst. 31 (1998), p. 169–185. | MR 1491657 | Zbl 0895.68081

[78] F. Durand & A. Messaoudi« Boundary of the rauzy fractal set in × generated by p(x)=x 4 -x 3 -x 2 -x-1 », Osaka J. of Math. (2010), in press.

[79] K. Eda & K. Kawamura« The fundamental groups of one-dimensional spaces », Topology Appl. 87 (1998), p. 163–172. | MR 1624308 | Zbl 0922.55008

[80] H. Ei & S. Ito« Tilings from some non-irreducible Pisot substitutions », Discrete Math. Theor. Comput. Sci. 7 (2005), p. 81–122. | MR 2164061 | Zbl 1153.37323

[81] H. Ei, S. Ito & H. Rao« Atomic surfaces, tilings and coincidences II. reducible case », Ann. Inst. Fourier 56 (2006), p. 2285–2313. | Numdam | MR 2290782 | Zbl 1119.52013

[82] M. Einsiedler & K. Schmidt« Markov partitions and homoclinic points of algebraic 𝐙 d -actions », Tr. Mat. Inst. Steklova 216 (1997), p. 265–284. | MR 1632169 | Zbl 0954.37008

[83] K. FalconerFractal geometry, Mathematical foundations and applications, John Wiley & Sons Ltd., 1990. | MR 1102677

[84] D.-J. Feng, M. Furukado, S. Ito & J. Wu« Pisot substitutions and the Hausdorff dimension of boundaries of atomic surfaces », Tsukuba J. Math. 30 (2006), p. 195–223. | MR 2248292 | Zbl 1130.37318

[85] T. Fernique« Generation and recognition of digital planes using multi-dimensional continued fractions », in Discrete geometry for computer imagery, Lecture Notes in Comput. Sci., vol. 4992, Springer, 2008, p. 33–44. | MR 2503454 | Zbl 1138.68592

[86] N. P. FoggSubstitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Math., vol. 1794, Springer, 2002. | MR 1970385 | Zbl 1014.11015

[87] C. Frougny & B. Solomyak« Finite beta-expansions », Ergodic Theory Dynam. Systems 12 (1992), p. 45–82. | MR 1200339

[88] C. Fuchs & R. Tijdeman« Substitutions, abstract number systems and the space filling property », Ann. Inst. Fourier (Grenoble) 56 (2006), p. 2345–2389. | Numdam | MR 2290784 | Zbl 1194.11023

[89] B. Gaujal, A. Hordijk & D. V. Der Laan« On the optimal open-loop control policy for deterministic and exponential polling systems », Probability in Engineering and Informational Sciences 21 (2007), p. 157–187. | MR 2350992 | Zbl 1128.90018

[90] J.-P. Gazeau & J.-L. Verger-Gaugry« Geometric study of the beta-integers for a Perron number and mathematical quasicrystals », J. Théor. Nombres Bordeaux 16 (2004), p. 125–149. | Numdam | MR 2145576 | Zbl 1075.11007

[91] M. Hata« On the structure of self-similar sets », Japan J. Appl. Math. 2 (1985), p. 381–414. | MR 839336 | Zbl 0608.28003

[92] G. A. Hedlund« Remarks on the work of Axel Thue on sequences », Nordisk Mat. Tidskr. 15 (1967), p. 148–150. | MR 228875 | Zbl 0153.33101

[93] M. Hollander« Linear numeration systems, finite beta expansions, and discrete spectrum of substitution dynamical systems », Thèse, University of Washington, 1996. | MR 2694876

[94] P. Hubert & A. Messaoudi« Best simultaneous Diophantine approximations of Pisot numbers and Rauzy fractals », Acta Arith. 124 (2006), p. 1–15. | MR 2262136 | Zbl 1116.28009

[95] S. Ito« Simultaneous approximations and dynamical systems (on the simultaneous approximation of (α,α 2 ) satisfying α 3 +kα-1=0) », Sūrikaisekikenkyūsho Kōkyūroku 958 (1996), p. 59–61. | MR 1468000 | Zbl 0917.11029

[96] S. Ito, J. Fujii, H. Higashinoand & S.-I. Yasutomi« On simultaneous approximation to (α,α 2 ) with α 3 +kα-1=0 », J. Number Theory 99 (2003), p. 255–283. | MR 1968452 | Zbl 1135.11326

[97] S. Ito & M. Kimura« On Rauzy fractal », Japan J. Indust. Appl. Math. 8 (1991), p. 461–486. | MR 1137652 | Zbl 0734.28010

[98] S. Ito & M. Ohtsuki« Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms », Tokyo J. Math. 16 (1993), p. 441–472. | MR 1247666 | Zbl 0805.11056

[99] —, « Parallelogram tilings and Jacobi-Perron algorithm », Tokyo J. Math. 17 (1994), p. 33–58. | MR 1279568 | Zbl 0805.52011

[100] S. Ito & H. Rao« Purely periodic β-expansion with Pisot base », Proc. Amer. Math. Soc. 133 (2005), p. 953–964. | MR 2117194 | Zbl 1099.11062

[101] —, « Atomic surfaces, tilings and coincidences I. Irreducible case », Israel J. Math. 153 (2006), p. 129–155. | MR 2254640 | Zbl 1143.37013

[102] C. Kalle & W. Steiner« Beta-expansions, natural extensions and multiple tilings », Trans. Amer. Math. Soc. (2010), in press. | MR 2888207

[103] E. R. Van Kampen« On some characterizations of 2-dimensional manifolds », Duke Math. J. 1 (1935), p. 74–93. | JFM 61.0638.03 | MR 1545866

[104] M. Keane« Interval exchange transformations », Math. Z. 141 (1975), p. 25–31. | MR 357739 | Zbl 0278.28010

[105] J. Kellendonk & I. Putnam« Tilings, C * -algebras, and K-theory », in Directions in mathematical quasicrystals (M. Baake et al., éds.), AMS CRM Monogr. Ser., vol. 13, 2000, p. 177–206. | MR 1798993 | Zbl 0972.52015

[106] R. Kenyon & A. Vershik« Arithmetic construction of sofic partitions of hyperbolic toral automorphisms », Ergodic Theory Dynam. Systems 18 (1998), p. 357–372. | MR 1619562 | Zbl 0915.58077

[107] K. KuratowskiTopology. Vol. II, New edition, revised and augmented. Translated from the French by A. Kirkor, Academic Press, 1968. | MR 259835 | Zbl 0158.40901

[108] J. C. Lagarias & Y. Wang« Self affine tiles in n », Adv. Math. 121 (1996), p. 21–49. | MR 1399601 | Zbl 0893.52013

[109] —, « Substitution Delone sets », Discrete Comput. Geom. 29 (2003), p. 175–209. | MR 1957227 | Zbl 1037.52017

[110] S. Le Borgne« Un codage sofique des automorphismes hyperboliques du tore », in Séminaires de Probabilités de Rennes (1995), Publ. Inst. Rech. Math. Rennes, vol. 1995, Univ. Rennes I, 1995, p. 35. | MR 1396814

[111] —, « Un codage sofique des automorphismes hyperboliques du tore », C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), p. 1123–1128. | MR 1423437

[112] —, « Un codage sofique des automorphismes hyperboliques du tore », Bol. Soc. Brasil. Mat. (N.S.) 30 (1999), p. 61–93. | MR 1686988

[113] J.-Y. Lee, R. V. Moody & B. Solomyak« Pure point dynamical and diffraction spectra », Ann. Henri Poincaré 3 (2002), p. 1003–1018. | MR 1937612 | Zbl 1025.37004

[114] D. Lind & B. MarcusAn introduction to symbolic dynamics and coding, Cambridge Univ. Press, 1995. | MR 1369092 | Zbl 1106.37301

[115] A. N. Livshits« On the spectra of adic transformations of markov compacta », Uspekhi Mat. Nauk 42 (1987), p. 189–190. | MR 896889 | Zbl 0635.47007

[116] —, « Some examples of adic transformations and automorphisms of substitutions », Selecta Math. Soviet. 11 (1992), p. 83–104. | MR 1155902

[117] B. Loridant & J. M. Thuswaldner« Interior components of a tile associated to a quadratic canonical number system », Topology Appl. 155 (2008), p. 667–695. | MR 2395584 | Zbl 1148.28009

[118] M. LothaireApplied combinatorics on words, Encyclopedia of Mathematics and its Applications, vol. 105, Cambridge Univ. Press, 2005. | MR 2165687 | Zbl 1133.68067

[119] J. M. Luck, C. Godrèche, T. A. Janner & Janssen – « The nature of the atomic surfaces of quasiperiodic self-similar structures », J. Phys. A 26 (1993), p. 1951–1999. | MR 1220802

[120] J. Luo« A note on a self-similar tiling generated by the minimal Pisot number », Fractals 10 (2002), p. 335–339. | MR 1932445 | Zbl 1077.37500

[121] J. Luo, S. Akiyama & J. M. Thuswaldner« On the boundary connectedness of connected tiles », Math. Proc. Cambridge Philos. Soc. 137 (2004), p. 397–410. | MR 2092067 | Zbl 1070.37010

[122] J. Luo, H. Rao & B. Tan« Topological structure of self-similar sets », Fractals 10 (2002), p. 223–227. | MR 1910665 | Zbl 1075.28005

[123] J. Luo & J. M. Thuswaldner« On the fundamental group of self-affine plane tiles », Ann. Inst. Fourier (Grenoble) 56 (2006), p. 2493–2524. | Numdam | MR 2290788 | Zbl 1119.52012

[124] J. Luo & Z.-L. Zhou« Disk-like tiles derived from complex bases », Acta Math. Sin. (Engl. Ser.) 20 (2004), p. 731–738. | MR 2096785 | Zbl 1063.11006

[125] R. D. Mauldin & S. C. Williams« Hausdorff dimension in graph directed constructions », Trans. Amer. Math. Soc. 309 (1988), p. 811–829. | MR 961615 | Zbl 0706.28007

[126] A. Messaoudi« Propriétés arithmétiques et dynamiques du fractal de Rauzy », J. Théor. Nombres Bordeaux 10 (1998), p. 135–162. | Numdam | MR 1827290

[127] —, « Frontière du fractal de Rauzy et système de numération complexe », Acta Arith. 95 (2000), p. 195–224. | MR 1793161 | Zbl 0968.28005

[128] —, « Propriétés arithmétiques et topologiques d’une classe d’ensembles fractales », Acta Arith. 121 (2006), p. 341–366. | MR 2224401

[129] R. V. Moody« Model sets: a survey », in From Quasicrystals to More Complex Systems (F. Axel & J.-P. Gazeau, éds.), Les Editions de Physique, Springer, Berlin, 2000, p. 145–166.

[130] H. M. Morse« Recurrent geodesics on a surface of negative curvature », Trans. Amer. Math. Soc. 22 (1921), p. 84–100. | JFM 48.0786.06 | MR 1501161

[131] B. Mossé« Recognizability of substitutions and complexity of automatic sequences », Bull. Soc. Math. Fr. 124 (1996), p. 329–346. | Numdam | MR 1414542 | Zbl 0855.68072

[132] S.-M. Ngai & N. Nguyen« The Heighway dragon revisited », Discrete Comput. Geom. 29 (2003), p. 603–623. | MR 1976609 | Zbl 1028.28010

[133] S.-M. Ngai & T.-M. Tang« A technique in the topology of connected self-similar tiles », Fractals 12 (2004), p. 389–403. | MR 2109984 | Zbl 1304.28009

[134] —, « Topology of connected self-similar tiles in the plane with disconnected interiors », Topology Appl. 150 (2005), p. 139–155. | MR 2133675 | Zbl 1077.37019

[135] W. Parry« On the β-expansion of real numbers », Acta Math. Acad. Sci. Hungar. 11 (1960), p. 401–416. | MR 142719 | Zbl 0099.28103

[136] B. Praggastis« Numeration systems and Markov partitions from self-similar tilings », Trans. Amer. Math. Soc. 351 (1999), p. 3315–3349. | MR 1615950 | Zbl 0984.11008

[137] N. Priebe-Franck« A primer of substitution tilings of the Euclidean plane », Expo. Math. 26 (2008), p. 295–326. | MR 2462439 | Zbl 1151.52016

[138] Y.-H. Qu, H. Rao & Y.-M. Yang« Periods of β-expansions and linear recurrent sequences », Acta Arith. 120 (2005), p. 27–37. | MR 2189716 | Zbl 1155.11337

[139] M. QueffélecSubstitution dynamical systems—spectral analysis, Lecture Notes in Mathematics, 1294. Springer, 1987. | MR 924156 | Zbl 0642.28013

[140] C. Radin« Space tilings and substitutions », Geom. Dedicata 55 (1995), p. 257–264. | MR 1334449 | Zbl 0835.52018

[141] G. Rauzy« Nombres algébriques et substitutions », Bull. Soc. Math. France 110 (1982), p. 147–178. | Numdam | MR 667748 | Zbl 0522.10032

[142] J.-P. Reveillès« Géométrie discrète, calcul en nombres entiers et algorithmique », Thèse de Doctorat, Université Louis Pasteur, Strasbourg, 1991.

[143] M. Rigo & W. Steiner« Abstract β-expansions and ultimately periodic representations », J. Number Theory 17 (2005), p. 283–299. | Numdam | MR 2152225 | Zbl 1084.11059

[144] E. A. J. Robinson« Symbolic dynamics and tilings of d », in Symbolic dynamics and its applications, Proc. Sympos. Appl. Math., Amer. Math. Soc. Providence, RI, vol. 60, 2004, p. 81–119. | Zbl 1076.37010

[145] D. Roy« Approximation to real numbers by cubic algebraic integers. II », Ann. of Math. 158 (2003), p. 1081–1087. | MR 2031862 | Zbl 1044.11061

[146] W. Rudin« Some theorems on Fourier coefficients », Proc. Amer. Math. Soc. 10 (1959), p. 855–859. | MR 116184 | Zbl 0091.05706

[147] T. Sadahiro« Multiple points of tilings associated with Pisot numeration systems », Theoret. Comput. Sci. 359 (2006), p. 133–147. | MR 2251606 | Zbl 1220.11009

[148] Y. Sano, P. Arnoux & S. Ito« Higher dimensional extensions of substitutions and their dual maps », J. Anal. Math. 83 (2001), p. 183–206. | MR 1828491 | Zbl 0987.11013

[149] K. Scheicher & J. M. Thuswaldner« Canonical number systems, counting automata and fractals », Math. Proc. Cambridge Philos. Soc. 133 (2002), p. 163–182. | MR 1900260 | Zbl 1001.68070

[150] K. Schmidt« On periodic expansions of Pisot numbers and Salem numbers », Bull. London Math. Soc. 12 (1980), p. 269–278. | MR 576976 | Zbl 0494.10040

[151] —, « Algebraic coding of expansive group automorphisms and two-sided beta-shifts », Monatsh. Math. 129 (2000), p. 37–61. | Zbl 1010.37005

[152] —, « Algebraic coding of expansive group automorphisms and two-sided beta-shifts », Monatsh. Math. 129 (2000), p. 37–61. | MR 1741033 | Zbl 1010.37005

[153] M. Senechal« What is...a quasicrystal? », Notices Amer. Math. Soc. 53 (2006), p. 886–887. | MR 2253164 | Zbl 1137.82001

[154] A. Siegel« Représentation des systèmes dynamiques substitutifs non unimodulaires », Ergodic Theory Dynam. Systems 23 (2003), p. 1247–1273. | MR 1997975

[155] —, « Pure discrete spectrum dynamical system and periodic tiling associated with a substitution », Ann. Inst. Fourier (Grenoble) 54 (2004), p. 341–381. | Numdam | MR 2073838 | Zbl 1083.37009

[156] V. F. Sirvent« Geodesic laminations as geometric realizations of Pisot substitutions », Ergodic Theory Dynam. Systems 20 (2000), p. 1253–1266. | MR 1779402 | Zbl 0963.37013

[157] V. F. Sirvent & B. Solomyak« Pure discrete spectrum for one-dimensional substitution systems of Pisot type », Canad. Math. Bull. 45 (2002), p. 697–710. | MR 1941235 | Zbl 1038.37008

[158] V. F. Sirvent & Y. Wang« Self-affine tiling via substitution dynamical systems and Rauzy fractals », Pacific J. Math. 206 (2002), p. 465–485. | MR 1926787 | Zbl 1048.37015

[159] S. Smale« Differentiable dynamical systems », Bull. Amer. Math. Soc. 73 (1967), p. 747–817. | MR 228014 | Zbl 0202.55202

[160] B. De Smit« The fundamental group of the Hawaiian earring is not free », Internat. J. Algebra Comput. 2 (1992), p. 33–37. | MR 1167526 | Zbl 0738.20033

[161] B. Solomyak« Dynamics of self-similar tilings », Ergodic Theory Dynam. Systems 17 (1997), p. 695–738. | MR 1452190 | Zbl 0884.58062

[162] —, « Tilings and dynamics », in EMS Summer School on Combinatorics, Automata and Number Theory, 2006.

[163] W. Steiner« Digital expansions and the distribution of related functions », 2000, http://www.liafa.jussieu.fr/~steiner/.

[164] A. Thue« Über unendliche Zeichenreihen », Norske Vid. Selsk. Skr. Mat. Nat. Kl. 37 (1906), p. 1–22. | JFM 39.0283.01

[165] —, « Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen », Norske Vid. Selsk. Skr. Mat. Nat. Kl. 43 (1912), p. 1–67. | JFM 44.0462.01

[166] W. P. Thurston« Groups, tilings and finite state automata », Lectures notes distributed in conjunction with the Colloquium Series, in AMS Colloquium lectures, 1989.

[167] J. M. Thuswaldner« Unimodular Pisot substitutions and their associated tiles », J. Théor. Nombres Bordeaux 18 (2006), p. 487–536. | Numdam | MR 2289436 | Zbl 1161.37016

[168] W. A. Veech« Interval exchange transformations », J. Anal. Math. 33 (1978), p. 222–272. | MR 516048 | Zbl 0455.28006

[169] R. F. Williams« Classification of one dimensional attractors », in Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., 1970, p. 341–361. | MR 266227

[170] S.-I. Yasutomi« On Sturmian sequences which are invariant under some substitutions », in Number theory and its applications (Kyoto, 1997), Dev. Math., vol. 2, Kluwer Acad. Publ., 1999, p. 347–373. | MR 1738827 | Zbl 0971.11007